

Current sheets in the Earth magnetosphere and laboratory experiments

A.G. Frank¹, A.V. Artemyev², A.A. Petrukovich²

¹*Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia*

²*Space Research Institute, Russian Academy of Sciences, Moscow, Russia*

Laboratory experiments on current sheets (CSs) were originally aimed at modeling events like solar flares and to substantiate theoretical predictions, see e.g. [1]. In the last few decades, dynamics of CSs and magnetic reconnection phenomena have been studied in a number of laboratory experiments, and extensive data have been obtained for internal structure of CSs, parameters of magnetic fields, plasma, electric fields and currents, plasma flow velocities, etc., see [2,3] and references therein. In the meantime, numerous satellite missions investigated the magnetotail – a stretched current sheet in the Earth's magnetosphere. The most comprehensive results have been obtained recently with the Cluster mission, see [4,5] and references therein. There is a dramatic scale difference of parameters of the magnetosphere and laboratory CSs, and the challenge now is to find out correlations between these CSs [6]. In this paper we compare some experimental results from the CS-3D device [3,7] with the results obtained by the Cluster mission in 2003.

A laboratory current sheet is created by exciting plasma current J_y along a singular X line of the magnetic configuration $\mathbf{B} = \{h \cdot z; B_y^0; h \cdot x\}$, with a gradient $h \cong (0.4 - 0.6) \text{ kG/cm}$ in the (x, z) plane, and a uniform guide field $B_y^0 \cong (1.5 - 3) \text{ kG}$. The vacuum chamber, 18 cm in diameter and 100 cm length, is filled with the Ar , He or Kr gas, and the initial plasma is produced by the Θ -discharge with strong pre-ionization. Then a pulsed voltage is applied exciting plasma current J_y of a sinusoidal form, with amplitude of $\cong (50 - 70) \text{ kA}$ and a half-period $T/2 \cong 6 \mu\text{s}$. Magnetic fields in the plasma are measured with three-component magnetic probes [8], two-dimensional distributions of the electron density $N_e(x, z)$ are recorded by the interference-holographic method [9], the electron and ion temperatures and the velocities of plasma flows are measured by spectroscopic methods [7,10].

The formation of a current sheet results in concentration of the electric current and plasma in a sheet and leads to significant modification of the initial magnetic field by increasing the tangential component B_x and decreasing the normal component B_z . (Note that the laboratory CSs are considered here in the magnetospheric coordinate system). The value and direction of the tangential component $B_x(z)$ change sharply at the CS mid-plane ($z=0$) where the current density $j_y(z)$ peaks. The profiles of $B_x(z)$ and $j_y(z)$ qualitatively coincide

with the similar profiles observed by Cluster, Fig.1. Near the sheet center the normal magnetic field component B_z is several times smaller than both B_x and B_y components; however, B_z increases with distance from the X line along the x -axis, and so does the B_z component in the magnetotail. Spatial gradients of all parameters along the direction normal to the current sheet (z -axis) far exceed gradients along x - and y -axes, and the spatial scale $2\delta z$ corresponds to the minor transverse size (thickness) of the sheet.

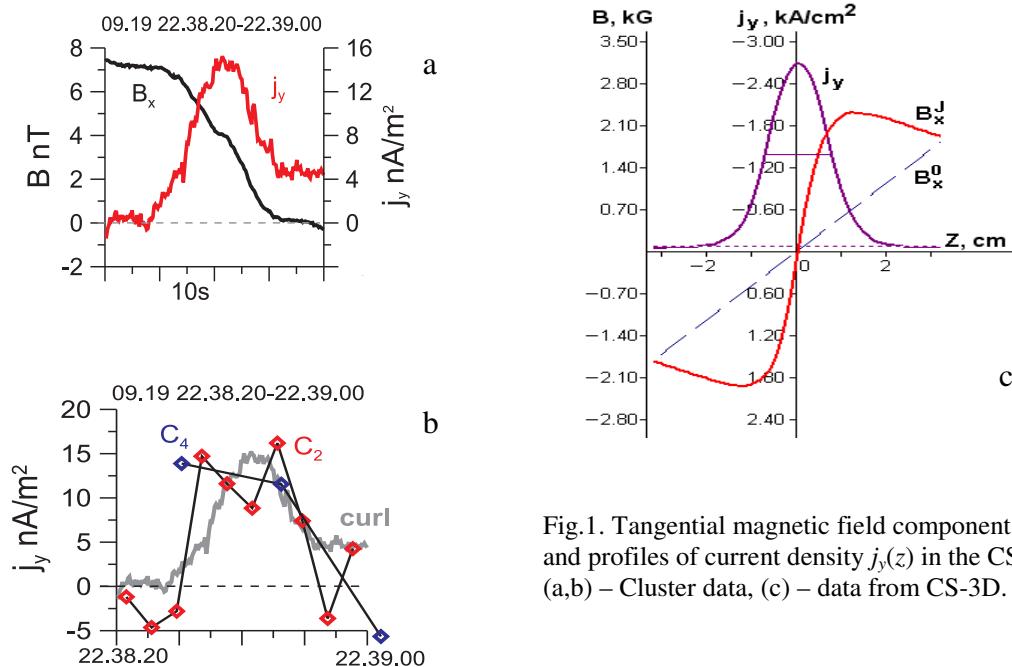


Fig.1. Tangential magnetic field component $B_x(z)$ and profiles of current density $j_y(z)$ in the CSs. (a,b) – Cluster data, (c) – data from CS-3D.

The strength of the initial guide field B_y^0 is a parameter affecting the maximum current density j_y^{max} , plasma density N_e^{max} in the sheet mid-plane ($z=0$), and the CS thickness $2\delta z$ [3,9]: as B_y^0 increases, $2\delta z$ increases while both j_y^{max} and N_e^{max} decrease, Table 1.

An enhancement of the guide field B_y over its initial value B_y^0 has been revealed in the laboratory-produced CSs [8]. The profiles of the guide field variations $\delta B_y(z) = \{B_y(z) - B_y^0\}$ perfectly coincide with the current density profiles $j_y(z)$, and the direction of δB_y is always the same as the direction of B_y^0 [8]. These peculiarities are in good qualitative agreement with the spacecraft observations, Fig.2. Note that the guide field amplification δB_y is provided by plasma currents j_x , which are of the same magnitude as the CS basic current j_y .

The electron temperature peaks at the mid-plane of the laboratory CSs where $B_x \approx 0$, $T_e^{max} \leq 10$ eV, Fig.3a, whereas the ion temperature is higher, $T_i \approx 40 \div 60$ eV [7,10]. Identical effects were observed by the Cluster mission: $T_i / T_e \approx 5 \div 10$, Fig.3b,c. The ions in the laboratory CSs are not magnetized in contrast to the electrons, which are magnetized and transfer most of the plasma current, just they do in the magnetotail CS.

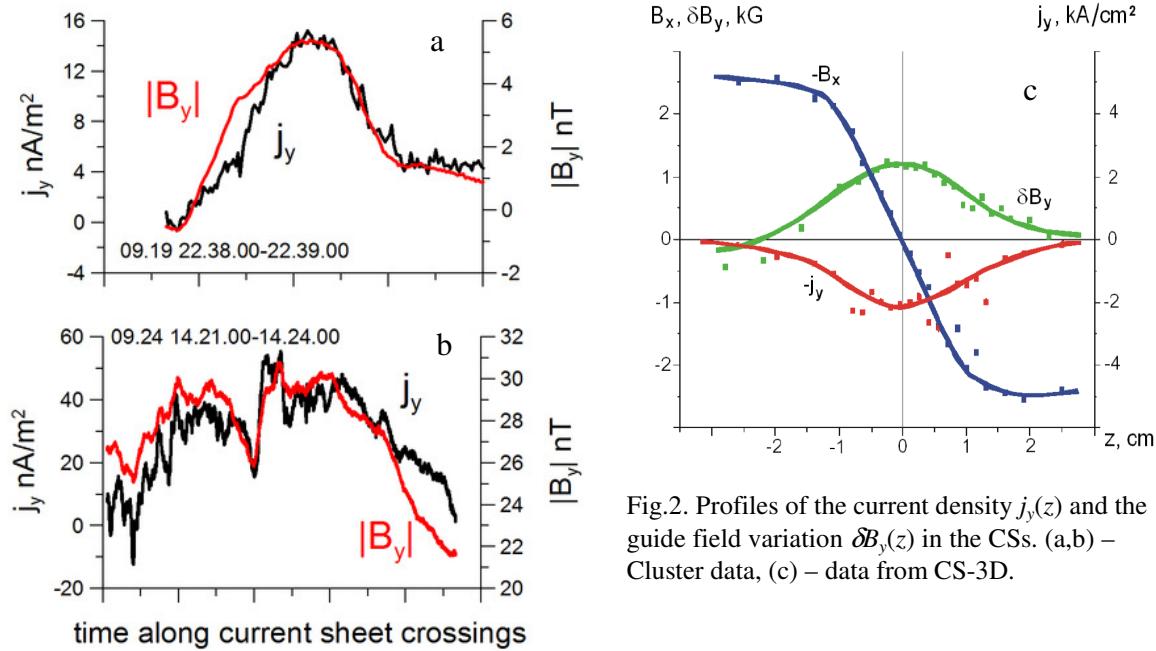


Fig.2. Profiles of the current density $j_y(z)$ and the guide field variation $\delta B_y(z)$ in the CSs. (a,b) – Cluster data, (c) – data from CS-3D.

The half-thickness δz of the laboratory CSs formed under various conditions agrees closely with the ion skin depth c / Ω_{0i} , where Ω_{0i} is the ion plasma frequency calculated for the corresponding ion density, Table 1.

Table 1. Parameters of CSs formed under various B_y^0 fields in the CS-3D device

	B_y^0 , kG	j_y^{\max} , kA/cm ²	δz , cm	N_e^{\max} , cm ⁻³	c / Ω_{0i} , cm	$\delta z \cdot \Omega_{0i} / c$
a	1.35	4	1.4	10^{16}	1.4	≈ 1
b	4.3	2.1	2.2	$0.5 \cdot 10^{16}$	2.0	≈ 1

The important characteristics of the magnetosphere and laboratory CSs are outlined in the Table 2. Though plasma density N_e in the magnetotail is less than one particle per cm³, and the Debye length is as large as $r_d \approx 0.6$ km, we have to do with the magnetospheric plasma sheet, since the CS dimension δz is two orders of magnitude larger than r_d .

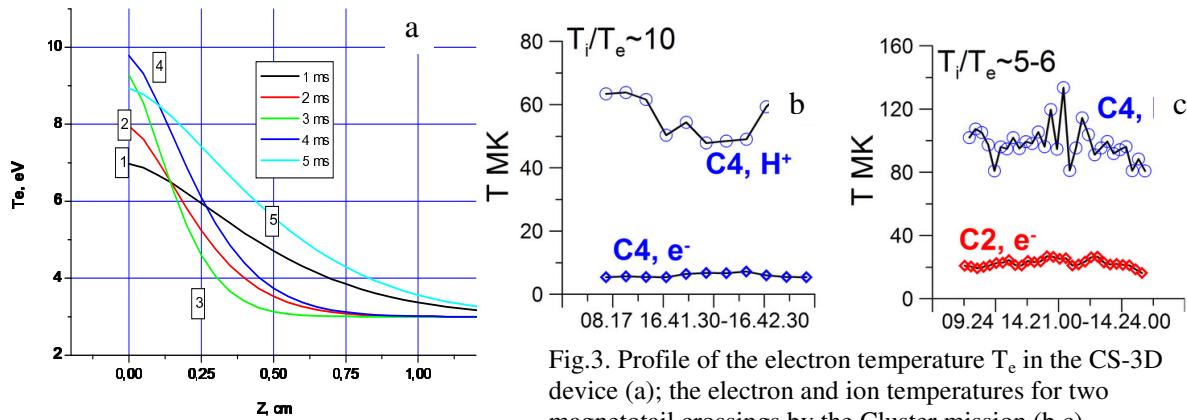


Fig.3. Profile of the electron temperature T_e in the CS-3D device (a); the electron and ion temperatures for two magnetotail crossings by the Cluster mission (b,c).

The fact of a fundamental importance is that the CS spatial scale δz is very close to the ion skin depth c / Ω_{0i} , their ratio is estimated as ≈ 1 for both magnetotail and laboratory CSs, see Table 2. Note that for the magnetotail CS the ion skin depth is comparable with the ion Larmor radius [4-6]. One can also see that the current drift velocity u_{dr} is somewhat higher than the Alfvén velocity v_A , their ratio is ≥ 1 .

The close examination of results obtained in the course of the Cluster mission in 2003 year and in experiments with the CS-3D device makes it evident that CSs exist both in the Earth magnetosphere and in laboratory conditions. The natural and laboratory CSs having

Table 2. *Parameters of the CSs in the magnetosphere and in the CS-3D device.*

	Magnetosphere	CS-3D
B, G	10^{-4}	$3 \cdot 10^3$
N_e , cm^{-3}	< 1	10^{16}
δz , cm	$2 \cdot 10^7$ (200 km)	1.5
r_d , cm	$6 \cdot 10^4$ (0.6 km)	$3.3 \cdot 10^{-5}$
$\delta z / r_d$	$3.3 \cdot 10^2 \gg 1$	$4.5 \cdot 10^4 \gg 1$
c/Ω_{0i} , cm	$2.3 \cdot 10^7$ (230 km)	1.4
$\delta z \cdot \Omega_{0i} / c$	≈ 1	≈ 1
j , A/cm^2	$3 \cdot 10^{-12}$	$2.7 \cdot 10^3$
u_{dr} , cm/s	$4 \cdot 10^7$	$1.7 \cdot 10^6$
v_A , cm/s	$3 \cdot 10^7$	10^6
u_{dr} / v_A	≥ 1	≥ 1

different sizes, magnetic field strengths, current densities, plasma concentration and temperatures, do exhibit a number of common features. This suggests that laboratory experiments can give us a deeper insight into the physics of the magnetosphere in the framework of “Laboratory astrophysics”.

The work was supported in part by the Russian Foundation for Basic Research (project 12-02-00553a) and the Program (OFN-15) “Plasma Processes in Space and Laboratory” of the Division of Physical Sciences of Russian Academy of Sciences.

References

1. Syrovatskii S.I. // Annu. Rev. Astron. Astrophysics 1981. V. 19. P. 163.
2. Yamada M., Kulsrud R., Ji H. // Rev.Mod.Phys. 2010. V. 82. P. 603.
3. Frank A.G. // Physics Uspekhi 2010. V. 53. P. 941.
4. Runov A. et al. // Ann. Geo. 2006. V. 24. P. 247.
5. Artemyev A.V. et al. // J. Geophys. Res. 2011. V. 116. P. A09233.
6. Artemyev A.V. et al. // J. Geophys. Res. 2013, in press.
7. Frank A.G., Kyrie N.P., Satunin S.N. // Physics of Plasmas 2011.V.18. P. 111209.
8. Frank A. G., Bugrov S. G., Markov V. S. // Phys. Lett. A 2009. V.373 P.1460.
9. Frank A.G., Bogdanov S.Yu., Markov V.S. et al. // Phys. Plasmas 2005. V.12, P. 052316.
10. Voronov G.S., Kyrie N.P., Markov V.S. et al. // Plasma Physics Reports 2008. V. 34. P. 999.