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ABSTRACT: A new symplectic map in magnetic coordinates is developed to study the resilience 

of golden and noble magnetic surfaces in tokamaks against resonant magnetic perturbations. The 

parameter s in this logarithmic map controls the magnetic shear. The locations of the equilibrium 

magnetic surfaces with golden and noble values of safety factor q [F.A. Volpe, J. Kessler, H. Ali, 

T.E. Evans and A. Punjabi, Nucl. Fus. 52, 054017 (2012), H. Ali and A. Punjabi, to appear in 

REDS: Inc. Plasma Sc. Plasma Tech] are calculated for varying magnetic shear. Magnetic 

perturbations with resonant surfaces just above and below these golden and noble surfaces are 

considered. These perturbations are applied with increasing amplitude and the critical levels of 

the perturbations δcrit when the surfaces break down are found. As the magnetic shear is 

increased, the resonant surfaces come closer. There is competition between the closer proximity 

of resonant surfaces and the magnetic shear. The results of this study will be presented. 

Magnetic shear plays an important role in magnetic confinement of fusion plasmas. In this 

paper, we construct a symplectic map in magnetic coordinates that calculates magnetic field line 

trajectories in single-null divertor tokamaks with variable shear. We use this map to study the 

resilience of golden magnetic surface in tokamaks against resonant magnetic perturbations. The 

mapping technique [1] is applied to integrate the field lines of toroidally confined plasma. In this 

formalism the equations for magnetic field lines take the Hamiltonian form 
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where ψ=r2/2  is a toroidal magnetic flux canonically conjugated to the poloidal angle θ  and φ is 

the toroidal angle. The field lines Hamiltonian  
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can be represented as a sum of the unperturbed flux  
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 and the perturbed part of the flux 
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Where χmn(ψ) is the amplitude of the perturbation with mode numbers (m,n) with the phase ξmn. 

The map for the field line is in magnetic coordinates, and is given by 
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where k is the map parameter. It represents the step-size of integration. Here, k is kept fixed at 

k=2π/36. 

In this paper, the safety factor q as a function of magnetic coordinate ψ is given by 

( )( ) 1 ln 1q sψ ψ= − −          (5) 

The parameter s in this logarithmic map controls the magnetic shear and ψ  is normalized by 

ψSEP, the toroidal flux inside the separatrix surface. The safety factor at the magnetic axis, 

q(ψ=0), is equal to unity. Fig. 1 shows safety factor as function of ψ.  The equilibrium generating 

function is then given by 

( ) ( )1/1 1 1Ei ln 1 Eis
EQ e
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The exponential integral Ei(x) in eqn.(6) is defined as ( )Ei
t tx

x
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t t
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definition can be used for real nonzero values of the argument x, but the integral has to be 

understood in terms of the Cauchy principal value due to the singularity of the integrand at zero. 

Fig. 1(b) shows the equilibrium generating function χEQ as a function of ψ. For magnetic 

perturbation, we choose two tearing modes with mode numbers (m,n)={(3,2),(2,1)}, and 

( ) ( ) ( )1 , cos 3 2 cos 2χ θ φ δ θ φ θ φ= − + −   .        (7) 

Typically, for standard H-modes, q on the magnetic axis is the minimum q-value and is 

just below unity, while q close to the plasma boundary, q95,  is 3 or above. q95 is the safety factor 

of the surface that has 95% of the poloidal flux compared to the flux inside the separatrix. 

Magnetic shear and q95 play an important role in plasma stability and confinement. Experiments 

are beginning to access the external kink stability boundary at edge safety factor q95=5 and in [2], 

authors reported results of experiments performed at q95∼9 in JT-60U, in order to attain high 

enough βp,  which is significantly higher than that observed in the baseline scenario for diverted 

40th EPS Conference on Plasma Physics P5.137



machines or in the ITER design. Fig. 2 shows safety factor at the 95% flux surface, q95, as a 

function of the shear parameter s for the generating function given in eqn. (6) for our map.  

  
Fig. 1(a) Safety factor q as a function of ψ  for s=0.7, 0.9, .., 

3.5. 

Fig. 1(b) Equilibrium generating function, χEQ,  as a 

function of ψ  s=0.7, 0.9, .., 3.5 

 

 

Fig. 2. The q95 as a function of toroidal flux for the shear 

parameter s. Curve through the data points is a power fit: q95 

scales as s2/3. 

 

From Fig. 2, we see that for s=0.7, q95=2.58 and for s=3.5, q95=7.1. The locations of the 

resonant magnetic surfaces are calculated for varying magnetic shear. The locations of the 

equilibrium magnetic surface with golden values of safety factor q [3,4] are calculated for 

varying magnetic shear. We call these surfaces golden surfaces. As the magnetic shear parameter 

is increased from 0.7 to 3.5, the resonant surfaces come closer. There is competition between the 

closer proximity of resonant surfaces and the magnetic shear. See Fig. 3. The perturbation given 

by eqn.(7) is applied to these surfaces with increasing amplitude; and the critical levels of the 

perturbations δcrit when the surfaces break down are calculated. We found that as the shear 
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parameter increases, the critical perturbation, δcrit scales approximately exponentially with the 

shear parameter, s. See Fig. 4. 

  
Fig. 3(a) Resonant and equilibrium golden magnetic 

surfaces as a function of the shear parameter s. 

Fig. 3(b) Distance between resonant magnetic surfaces 

as a function of the shear parameter s. 

 

 

Fig. 4. The critical amplitude, δcrit as a function of the 

shear parameter s. Curve through data point is an 

exponential fit: δcrit scales as e-s/3. 
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