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Introduction

Due to the strong dependence of fusion power on plasma density, the tokamak density limit
has been the subject of intense study over several decades [1]. Density limit disruptions are
usually ascribed to a thermal instability occurring when the radiation loss near the edge region
overcomes the heat flux from the core. The ensuing contraction of the temperature profile
leads to a shrinkage of the current profile that drives unstable a global MHD mode, such as
the tearing mode [2], leading to disruption if the density continues to grow. Whereas this
explanation for the appearance of a low-order tearing mode (usually of poloidal mode number
m =2 and toroidal mode number n = 1) when the density increases towards the limit is correct,
it has proved difficult to obtain a robust onset criterion based on the linear instability.
Dedicated density limit experiments were performed on FTU (R=0.935m, a=0.3 m,
Br=25-8.0T, I < 1.6 MA) in a wide range of plasma current and toroidal magnetic field
values [3]. In this paper the linear stability of the standard tearing mode has been analyzed to
derive a condition for the onset of the MHD activity in high density ohmic plasma.
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reached during each period still increasing algebraically (a detailed description of this
complex behaviour will be reported elsewhere). In the last phase, the mode growth speeds up
and the frequency decreases to zero [4]).

*See the appendix of P. Buratti et al., Proceedings of the 24th IAEA Fusion Energy Conf., San Diego, USA,2012
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Linear stability and nonlinear evolution of the tearing mode

The classical tearing stability parameter A7 associated to the current density profile can be
calculated solving the marginal stability equation [2] with the current density profile obtained
from the JETTO transport code, considering the electron temperature profile from the ECE
diagnostic and assuming Spitzer resistivity. In Figure 2 (left) the safety factor and the current
density profiles are reported, for different times up to the density limit disruption. The current
profile peaks as the density limit is approached; in particular, from the zoom on the right we
note a change of the derivative of the current density at the mode resonant surface, and also a
continuous decrease of the value of the current density at the mode resonant surface. The
linear theory also includes a stabilizing toroidal term A ¢ associated to field line curvature [5],
so the stability criterion can be written as (drift effects can be neglected because of the high
collisionality):

’ ’ ’
Alin _AJ +AC <0 (1)
# 34769 # 34769
5 —————T T 25 - : . T — .
24 | — t= B
o o | Tiamem /] S 23f| = iamom: & ]
] £=0.90-1.00s| [*] t=090-1.005 . }
o - 45 22| — t=105-1155| -
o —— t=1.05-1.155| q o AR i T
8 3R | — t=120-1255 2 y - S 21F | -
> | > 2 Z
[ < [0 = |
L L
© ! © == 4
w | i (2] — ]
— I gy — !
< ; < f
S ! 3 £
< i b < i
= 1 E =3
- ! J ) -
2z 1 2
2 E Z
= st =
() (7]
T - T
E E €
[ ] 1
= 5 ) - —
© 0.0 0.1 0.2 03 04 05 0.6 0.7 0.8 09 1.0 o 0.55 0.60 0.65 0.70 0.75
Normalized minor radius r/a Normalized minor radius r/a

Figure 2. Safety factor and current density profiles at different times during the current flat-top and the density
ramp-up up to the density limit disruption.

In Figure 3 the time evolution of the three
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observation (a). A more accurate analysis could be done considering the development of the
magnetic island inside the plasma. The radial field perturbation at the mode resonant surface
rs is proportional to the poloidal field perturbation at pick-up coils (at r.=0.33 m),
Br(rs) =k  Ba(re). Rather than employing the usual analytical estimate based on neglecting
plasma current outside rs, the factor k is calculated numerically using the cylindrical
approximation and the current density profile from JETTO with an ideal wall at r = 0.33 m.
At mode onset, the resulting k differs by 40% from the analytical estimate and converges to
the latter going towards the density limit. Finally, considering the well-known expression for
the island width, we have:
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particular, taking into account the effect Figure 4. Time traces of the island width evaluated
associated to the island width [7], we can starting from the pick-up signals (a) and from the

derive the saturation amplitude of the island, Rutherford equation (b).

considering that for typical current profiles the island reaches saturation in a small fraction of
a resistive time, after which the saturated state adiabatically follows the changing current
profile. The resulting values of the saturated island width, corresponding to the condition
dw/dt = 0 in the Rutherford equation, are reported in Figure 4 in arbitrary unit, showing that
also the predicted island width increases with increasing peaking of the current density profile.
After t = 1.15 s the Rutherford equation does not predict saturation, probably given to the high
values of the linear tearing parameter at shrunk current profiles.

Discussion

We have shown that the tearing mode onset in a density limit discharge is associated to the
peaking of the current density profile and the MHD onset time can be estimated starting from
the linear stability criterion expressed by equation (1). The current profile peaking is usually
parameterized by the normalized internal inductance of the plasma / (as defined in [8]). In
Figure 5 (left) the time traces of the internal inductance are reported for three discharges with
Br=8.0 T and different values of plasma current (I, = 500, 700, 900 kA). As we can see,
during the density ramp-up the internal inductance continuously increases and the values of /i
(namely the peaking of the density current profile) at the MHD onset (corresponding to the
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Figure 5. (Left) Time traces of the internal inductance for three discharges with Br=28.0 T and

different values of plasma current (see legend). The squares in the figure correspond to the MHD

onset. (Right) Internal inductance at the MHD onset as a function of the edge safety factor for 12

different discharges in a wide range of values of plasma current and toroidal magnetic field (see

legend).
squares in the figure) are higher for lower plasma current. To complete our analysis we have
studied the MHD activity of 12 discharges in a wide range of values of plasma current
(I = 500-900 kA) and toroidal magnetic field (Br = 5.2-8.0 T) and for each discharge we have
derived the value of the internal inductance at the onset of the MHD activity. The results of
this analysis are reported in Figure 5 (right) as a function of the edge safety factor gede,
showing that at the MHD onset /i is a function of gedge.

Conclusions

The usual explanation for the appearance of a low-order tearing mode when the density
increases towards the limit is correlated to a contraction of the current density profile. In order
to obtain a condition for the onset of the MHD activity, the linear stability of the classical
tearing mode has been analyzed for a specific discharge, confirming a destabilization with
increasing peaking of the density current profile. Furthermore, from the nonlinear island
evolution described by the Rutherford equation we have noted that the critical phase
preceding the density limit corresponds to the lack of prediction of a saturated island width.
Finally, considering different discharges, a general relation was obtained at the MHD onset
between the normalized internal inductance of the plasma and the edge safety factor.
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