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1. Introduction. Resistive wall stabilization of long-wavelength kink-like modes (resistive 

wall modes, RWMs) resulting in essential improvement in terms of the achievable beta was 

discovered and systematically studied on the DIII-D tokamak [1, 2]. The modes called RWMs 

have low m  and n  (poloidal and toroidal wave numbers). Typically, 2m  or 3 and 1n  [2]. 

Analytical theory predicts [3–5] and model computations confirm [6] that such modes can be 

stabilized by fast enough rotation affecting the energy dissipation in the resistive wall through 

the skin effect. This looks an attractive possibility to explain still mysterious rotational 

stabilization in DIII-D [1, 2]. The model is based on the first principles (Maxwell equations and 

Ohm’s law) which implies that the phenomenon must be a part of other events whenever a 

mode interacts with a wall. To prove this, we extend the approach to a wider area. 

 Here we analyze a possible effect of the rotational stabilization [3–6] on the modes with 

m  and n  higher than those of conventional RWMs. Such modes with 10m  are often 

observed in experiments in tokamaks as oscillations with a saturated amplitude, see [7, 8]. 

2. Formulation of the problem. We consider the cylindrical plasma with nearby resistive wall 

of radius wr  and thickness wd . The plasma-wall gap and space behind the wall are treated as 

vacuum. As in [6], we have to solve the dispersion relation for the external kink modes  
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where I  and K  are the modified Bessel functions of the first and the second order, iy  and ey  

are values of wsk dry /  on the inner ( wrr  ) and the outer ( ww drr  ) sides of the wall,  

2
0 wsk d        (2) 

and   is the wall conductivity. This is derived for the ),( nm  mode of the magnetic 

perturbation b  depending on time as )exp( t  with  inR   ( R  and   are, respectively, 

the growth rate and the rotational frequency of the mode). The stability parameter 

IRm iggg   on the left-hand side is determined by the plasma properties [3–6] through the 

boundary conditions for b  at the plasma boundary. For calculations we take 50/ ww dr  

roughly corresponding to parameters of the DIII-D tokamak. 
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 Equation (1) was derived assuming 1)/( mAn  and 2222 / wwsk rdnA   where 

wrRA /  with R  the major radius. In this approximation, n  enters the final result (1) through 

 inR   only, while the m  number is present there as a parameter determining the order of the 

modified Bessel functions. In the limit wds  , where s  is the skin depth determined by 

0Re/1 s , Eq. (1) gives us (for more details and alternative derivations see [3–6])  

)/1( 22
cr

ld
RR   ,      (3) 

where skR
ld
Rcr gn  /22 2 . This explicitly describes the rotational stabilization of the fast 

rotating modes, but does not show a dependence of m  hidden in Eq. (1). In [6], the effect was 

studied and predictions of Eqs. (1) and (3) have been compared for the 2m  mode. Here 

similar analysis is performed for m  up to 10.  

3. Computation results. First, we note that 

the locked modes ( 0  or 0Ig ) become 

unstable at 0Rg . Their normalized growth 

rate N R sk    calculated by formula (1) is 

shown by solid curves in Fig. 1 for 2m  

and 10m . At given Rg , the mode with 

higher m  have slightly larger growth rate. 

Nevertheless, at 1Rg , the solid curve for 

10m  is quite close to the parabolic dashed 

curve representing asymptotic dependence 

(3). The deviation decreases with increasing 

Rg . It is under 10% at 3.49Rg   for 10m  

and at 1.88Rg   for 2m . The straight line 

in Fig. 1 corresponds to the standard 

thin-wall approach which, indeed, stronger underestimates the growth rate at 1Rg  than the 

thick-wall model. At the point 1Rg  both asymptotes, linear and parabolic, give 32.5% error 

for 2m  and 41.7% for 10m .  

 The results in Fig. 2 can be interpreted as a rotation frequency of a marginally stable 

mode at given Rg . This skN    is equivalent to skcr
cr
N   , but now it is calculated from 

Eq. (1) derived without expansions in wds / . For comparison, cr  is plotted here as a dashed 

 

Fig. 1. Normalized growth rate N R sk    versus Rg  

for the 2m  and 10m   locked modes. The solid 

curves are calculated by Eq. (1), the dashed one by its 

thick-wall asymptote (3) at 0  and the straight solid 

line is the standard thin-wall estimate RskR g .  
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parabolic line. The solid curves represent 

solutions of Eq. (1) for 2m  and 10m  

modes. The modes with higher m  numbers 

give larger N  for a given Rg  that implies 

necessity of larger rotation frequencies to 

stabilize them. The deviation of the 

solution of Eq. (1) from asymptotic 

parabola (3) is less than 10% at 3.56Rg   

for 10m  and at 1.98Rg   for 2m . At 

the point 1Rg  the error is 32.7% and 

19.5% for 10m  and 2m , respectively. 

 The rotational stabilization depicted 

in Figs. 1 and 2 is related to the skin effect 

in the resistive wall. Solid curves in Fig. 3 

show the radial component of the perturbed 

magnetic field rb  inside the wall for 2m  

and 10m  modes at 1N   and 1N  . 

Here the real part of the perturbed magnetic 

flux /rirb m   normalized to its value on 

the inner side of the wall is plotted versus 

the distance across the wall normalized to 

its thickness. The horizontal line is the 

thin-wall asymptote while the dashed curve 

is the real part of )/exp( S , where 

ww drr /)(  and 0/1 S . Clearly, 

both solid curves are better approximated 

by the exponent function than by a constant, which proves that a thin-wall approximation 

( const  in the wall) cannot be used for these modes. At higher m  the mode amplitude 

stronger decreases with   inside the wall and lies closer to the exponent. 

4. Discussion. The presented results show that predictions of (3) derived in the limit 1Rg  

[3–6] can be used for modes with m  from 2 to 10 at 1Rg . In practice this means the 

 

Fig. 2. Minimal angular rotation frequency necessary for 

the rotational stabilization of the 2m  and 10m  

modes at given Rg . The solid curves are calculated by 

formula (1), the dashed one is the parabola (3). 

 

Fig. 3. Re( / )   for the 2m   and 10m   modes 

at 1N   and 1Nn   (solid curves). The dashed 

curve is the real part of )/exp( S  while the 

horizontal line corresponds to the thin-wall approach. 
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oscillations with frequencies of several kHz, see [9]. The constraint on maximal m  comes from 

the fact that even an ideal wall response must be m
wp rr 2)/(  weaker than the driving perturbation 

at the plasma surface. In our analysis we use / 0.9p wr r   to mimic DIII-D [2]. Then for 10m  

we have 12.0)/( 2 m
wp rr  showing a weak, but nonnegligible effect of the wall on the mode. 

To compare our results with experimental observations, we need sk . With 410sk  s, which 

is a good estimate for DIII-D tokamak, the point with 28.6N  corresponds to the critical 

frequency 10)2/(  skNcr   kHz. Such frequency is typical for EHO’s fundamental 

1/5/ nm  mode in the DIII-D [7]. The ratio wp rr /  varies strongly among the machines, 

which can be a reason for discrepancies in observed EHOs in various tokamaks [10, 11]. 

5. Conclusion. The study proves that the effect of rotational stabilization must play a role in the 

dynamics of short-wavelength edge modes in tokamaks and hence should be taken into account 

at their analysis at relatively modest ~ 1Rg  or at 2skn . In particular, we expect that the 

dynamics of EHOs and HFOs [7, 10, 11] can be partly explained by the wall-mode interaction. 

Moreover, the sensitivity of the results in [8] on the MHD oscillation frequency may also be 

attributed to the wall effect. For experimental testing of the model predictions the measured 

growth rates and the frequencies of the edge perturbations should be compared with Eq. (3). It 

could be helpful to collect the data at different values of the ratio wp rr / . The rotational 

stabilization at 1Rg  (smaller rotation frequencies) is the field of future theoretical studies. 
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