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1. Introduction. Resistive wall stabilization of long-wavelength kink-like modes (resistive
wall modes, RWMs) resulting in essential improvement in terms of the achievable beta was
discovered and systematically studied on the DIII-D tokamak [1, 2]. The modes called RWMs
have low m and n (poloidal and toroidal wave numbers). Typically, m =2 or3 and n=1 [2].
Analytical theory predicts [3—5] and model computations confirm [6] that such modes can be
stabilized by fast enough rotation affecting the energy dissipation in the resistive wall through
the skin effect. This looks an attractive possibility to explain still mysterious rotational
stabilization in DIII-D [1, 2]. The model is based on the first principles (Maxwell equations and
Ohm’s law) which implies that the phenomenon must be a part of other events whenever a
mode interacts with a wall. To prove this, we extend the approach to a wider area.

Here we analyze a possible effect of the rotational stabilization [3—6] on the modes with
m and n higher than those of conventional RWMs. Such modes with m <10 are often
observed in experiments in tokamaks as oscillations with a saturated amplitude, see [7, 8].
2. Formulation of the problem. We consider the cylindrical plasma with nearby resistive wall

of radius r, and thickness d . The plasma-wall gap and space behind the wall are treated as

vacuum. As in [6], we have to solve the dispersion relation for the external kink modes

K, o), (y)-1, ,(y)K, (y.)
= " m—1 i m—1 e m—1 i m—1 e , (1)
En T L () + 1, (9K (3,

where / and K are the modified Bessel functions of the first and the second order, y, and y,
are values of y =./yr,r/d  onthe inner (r =r, ) and the outer (r =r, +d, ) sides of the wall,

Ty = i), ()
and o is the wall conductivity. This is derived for the (m,n) mode of the magnetic

perturbation b depending on time as exp(y) with y =y, +inw (y, and o are, respectively,

the growth rate and the rotational frequency of the mode). The stability parameter

g, = & +1ig, on the left-hand side is determined by the plasma properties [3—6] through the
boundary conditions for b at the plasma boundary. For calculations we take r, /d, =50

roughly corresponding to parameters of the DIII-D tokamak.
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t, >>n"d, /r, where

Equation (1) was derived assuming n/(md)<<1 and A’ \ 14
A=R/r, with R the major radius. In this approximation, »n enters the final result (1) through
¥r +inw only, while the m number is present there as a parameter determining the order of the

modified Bessel functions. In the limit s <<d , where s is the skin depth determined by

wo

1/s=Re.|u,0y7 , Eq. (1) gives us (for more details and alternative derivations see [3—6])

ve=ri(-0’/a)), (3)
where nw,, =2yy =2g: /7, . This explicitly describes the rotational stabilization of the fast

rotating modes, but does not show a dependence of m hidden in Eq. (1). In [6], the effect was
studied and predictions of Egs. (1) and (3) have been compared for the m =2 mode. Here
similar analysis is performed for m up to 10.
3. Computation results. First, we note that

the locked modes (w=0 or g, =0) become
unstable at g, > 0. Their normalized growth
rate y, = y,7, calculated by formula (1) is

shown by solid curves in Fig. 1 for m =2
and m=10. At given g,, the mode with

higher m have slightly larger growth rate.

Nevertheless, at g, >1, the solid curve for

m =10 1is quite close to the parabolic dashed
curve representing asymptotic dependence  Fig. 1. Normalized growth rate ¥, = ¥,7,, versus g,
(3). The deviation decreases with increasing  for the m =2 and m =10 locked modes. The solid

gr - Itis under 10% at gz >3.49 for m =10  curves are calculated by Eq. (1), the dashed one by its

. . thick-wall asymptote (3) at @ =0 and the straight solid
and at g, >1.88 for m =2. The straight line ymptote (3) s

line is the standard thin-wall estimate ) ,7, = g, .
in Fig. 1 corresponds to the standard

thin-wall approach which, indeed, stronger underestimates the growth rate at g, >1 than the
thick-wall model. At the point g, =1 both asymptotes, linear and parabolic, give 32.5% error
for m =2 and 41.7% for m =10.

The results in Fig. 2 can be interpreted as a rotation frequency of a marginally stable
mode at given g, . This @, = wz, is equivalent to o, =®, 7, but now it is calculated from

Eq. (1) derived without expansions in s/d . For comparison, @, is plotted here as a dashed
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parabolic line. The solid curves represent
solutions of Eq. (1) for m=2 and m =10
modes. The modes with higher m numbers
give larger w, for a given g, that implies
necessity of larger rotation frequencies to
stabilize them. The deviation of the
solution of Eq. (1) from asymptotic

parabola (3) is less than 10% at g, >3.56
for m=10 and at g, >1.98 for m=2. At

the point g, =1 the error is 32.7% and
19.5% for m =10 and m =2, respectively.

The rotational stabilization depicted
in Figs. 1 and 2 is related to the skin effect
in the resistive wall. Solid curves in Fig. 3
show the radial component of the perturbed

magnetic field b, inside the wall for m =2
and m =10 modes at y, =1 and o, =1.
Here the real part of the perturbed magnetic
flux y =irb. / m normalized to its value on

the inner side of the wall is plotted versus
the distance across the wall normalized to
its thickness. The horizontal line is the
thin-wall asymptote while the dashed curve

is the real part of exp(—¢/S) , where

{=(r—r)/d and 1/S = ./u,oy . Clearly,

both solid curves are better approximated

Fig. 2. Minimal angular rotation frequency necessary for

the rotational stabilization of the m =2 and m =10
modes at given g, . The solid curves are calculated by

formula (1), the dashed one is the parabola (3).
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Fig. 3. Re(y /y_) for the m =2 and m =10 modes
at ¥, =1 and nw, =1 (solid curves). The dashed

curve is the real part of exp(—/¢/S) while the

horizontal line corresponds to the thin-wall approach.

by the exponent function than by a constant, which proves that a thin-wall approximation

(w = const in the wall) cannot be used for these modes. At higher m the mode amplitude

stronger decreases with ¢ inside the wall and lies closer to the exponent.

4. Discussion. The presented results show that predictions of (3) derived in the limit g, >>1

[3—6] can be used for modes with m from 2 to 10 at g, >1. In practice this means the
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oscillations with frequencies of several kHz, see [9]. The constraint on maximal m comes from

2m

the fact that even an ideal wall response must be (r, /r, )™ weaker than the driving perturbation

at the plasma surface. In our analysis we use 7, /7, =0.9 to mimic DIII-D [2]. Then for m =10
we have (r, / r,)"" ~0.12 showing a weak, but nonnegligible effect of the wall on the mode.

To compare our results with experimental observations, we need 7, . With 7, =10 s, which
is a good estimate for DIII-D tokamak, the point with @, =6.28 corresponds to the critical
frequency v, =w, /(27r,) =10 kHz. Such frequency is typical for EHO’s fundamental
m/n=5/1 mode in the DIII-D [7]. The ratio r, /r, varies strongly among the machines,

which can be a reason for discrepancies in observed EHOs in various tokamaks [10, 11].
5. Conclusion. The study proves that the effect of rotational stabilization must play a role in the
dynamics of short-wavelength edge modes in tokamaks and hence should be taken into account

at their analysis at relatively modest g, ~1 or at nwr, > 2. In particular, we expect that the

dynamics of EHOs and HFOs [7, 10, 11] can be partly explained by the wall-mode interaction.
Moreover, the sensitivity of the results in [8] on the MHD oscillation frequency may also be
attributed to the wall effect. For experimental testing of the model predictions the measured
growth rates and the frequencies of the edge perturbations should be compared with Eq. (3). It

could be helpful to collect the data at different values of the ratio r,/r, . The rotational

stabilization at g, <1 (smaller rotation frequencies) is the field of future theoretical studies.
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