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We start from a current-carrying cylindrical plasma with imposed periodicity L, = 2R mod-
eling a large aspect ratio toroidal configuration of major radius R. Applying a helical deforma-
tion of the equilibrium plasma boundary with the same helical pitch as magnetic field lines at
g = m/n results in the breaking of topology of the helical flux surfaces and the appearance of
magnetic islands at the corresponding resonant surface. Such a helical equilibrium with islands
is typically unstable against internal modes resonant with the island chain (helical wave number
ny = 0) [1]. While rotational symmetry restrictions on the plasma boundary shape exist for the
islands at the rational magnetic surfaces with g > 1, any shaping of the plasma column, includ-
ing spatial helical axis, is admissible to produce single helicity magnetic islands for ¢ = 1 and
g = 1/n in general.

The stability of the chains of helically symmetric magnetic islands is investigated for tokamak-
like configurations with positive shear and for the configurations with safety factor g decreasing
to the plasma boundary (negative magnetic shear) relevant to RFP configurations [2]. The un-
structured grid MHD_NX code is used to compute ideal MHD stability of 2D (cylindrical, axial

or helical symmetry) equilibria with arbitrary topology of magnetic surfaces [3].
1 Helically symmetric equilibria with islands

The equilibrium magnetic field in helically symmetric plasma B= (Vyy, x e3+ fe3)/g33 can
be represented using the curvilinear coordinates (x!,x%,x3) = (u,v,z) with the corresponding
contravariant e;, = d7/dx* and covariant ¢* = Vx* vectors. The (u,v) = (rcos 6),,rsin 6y) plane
is rotating about the origin according to the polar coordinate transformation (r, 0) into (r, 6, =
0 — kz), where the helix pitch is 27/ k.

The generalized Grad-Shafranov equilibrium equation for the helical flux y;, takes the form:
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Gh=1+ K'2v2, G = —K'zuv, Gp=1+ K2u2, gxn=1+ K'z(uz—l—vz).
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We assume a linear dependence in y;, for the current density j3 = ff’ + g33p’ and for force-free

configurations (p’ = 0), we have .
g =0 ja = ayy/d+A, @

where a is the plasma minor radius and the coefficients o and A are varied to obtain a family of
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equilibria with islands.

A standard model for a tokamak in the limit of large aspect ratio is 1D circular cylinder
equilibrium with the safety factor ¢ = rB;/RBg, where 0 < z < 2zR, R is the major radius
of the equivalent torus with aspect ratio R/a > 1. The values R = 1 and a = 0.1 are used;
f = 11s a good approximation for strong longitudinal magnetic field. Direct solutions of the
equation (1) with perturbed boundary were investigated in [1]. However, due to the linearity
of the equilibrium equation with the chosen r.h.s (2) and with the approximation f = const a
helically symmetric equilibrium with islands can be constructed as a sum of the cylindrically
symmetric part satisfying the inhomogeneous equation (1) and a helical eigensolution (o, y;,)
of the homogeneous equation without the additional helical term —2xf/ g%3 and with A = 0.
Provided that the cylindrical solution features local extremum for the value of & equal to the
eigenvalue (resonant ), the sum of the solutions gives the equilibrium with islands. In contrast
to the case with non-resonant & when the islands can be generated only due to the boundary
deformation, the island width in the resonant equilibria can be varied keeping the same circular
boundary and varying the amplitude H of the helical eigenfunction normalized by the maximum
of the cylindrically symmetric part. The local extrema in the helical flux function y;, correspond
to the presence of the magnetic surface ¢ = 1/(Rx) inside the 1D cylindrical equilibrium. The
value of A controls current density at the boundary and global shear. The equilibrium equation
is linear in y;, and can be readily solved numerically. Increasing the values of A in (2) beyond
the 2k f lead to the change of sign of y;, and corresponds to hollow current density profile.
In Fig.1 the flux functions ff’ related to the longitudinal current density are plotted across the
plasma midplane for different values of @ and the coefficient A. For the helical pitch ¥ = 1 the
value of A = 2 defines the limit between positive and negative shear (hollow current density
profile) configurations for a chosen & due to the presence of the additional helical term. In the
next section the ideal MHD stability of the equilibria with the m = 2,3, 4 island chains and with

different current density profiles is presented.
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Figure 1. The current density jz = f f' profiles versus u at v =0 for the values of 0 <A < 2 (red)

and 2 < A <3 (blue) in the Rx = 1 equilibria (a) non-resonant value of ¢ =21; A =1.75,2.25
are shown by bold lines (b) oo = 26.5 close to the m = 2 resonant value; A = 1.75,2.1 are
shown by bold lines (c) & = 41 close to the m = 3 resonant value; A = 1.75,2.25 are shown
by bold lines (d) the safety factor q profiles for the values of A corresponding to the bold lines
in current density plots, the numbers indicate o values.
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2 Ideal MHD stability of helical equilibria with resonant and non-resonant islands

The stability computations were performed with the MHD_NX code [3] modified for an arbi-
trary 2D equilibrium configuration (cylindrical, toroidal axisymmetric and helical). The parallel
direct sparse matrix solver MUMPS [4] was used within the PETSc framework running several
times faster for large grid cases compared to the standard solver.

Let us note that the growth rate dependence on the value of Rk under fixed W, ff’ and ¢
is quite weak in general due to the large aspect ratio approximation. So for the internal n;, = 0
mode stability calculations the value of Rx = 1 is used, which corresponds to islands at the
q = 1 rational surface. Let us remind that any shaping of the plasma column, including spatial
helical axis, is admissible also for ¢ = 1/n islands in general.

The results for the non-resonant islands in the equilibria with o¢ =21 from [1] were extended
to the negative shear (hollow current) configurations with A > 2. It was found that the growth
rate of nj, = 0 tilt mode for the m = 2 island chain induced by elliptic cross-section deformation
is almost the same in the negative shear equilibrium with the same global shear (g variation)
(Fig.2). The triangular plasma shape deformation leads to marginally unstable m = 3 island

chain; the equilibrium with squareness in the cross-section giving m = 4 islands is stable.
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Figure 2. (a) Level lines of helical flux y;, for the equilibrium with non-resonant m = 2 is-

lands (cross-section elongation 1.04) o = 21, A = 2.25, negative shear; (b) arrow plot and
streamlines of plasma displacement & projection onto (u,v) plane and contour plot of &,
o/ wﬁh = —0.63; (c) helical flux y, for the equilibrium with non-resonant m = 2 islands
a =21, A = 1.75, positive shear; (d) plasma displacement, a)/a)ih =—-0.67

The stability properties change for larger and resonant values of @ ~ 26.5,41. The same
boundary perturbations with m = 3 for oo = 26.5 and with m = 4 for oo = 41 give nj; = 0 insta-
bility (Fig.3). Let us note that there are at least two unstable modes for the m = 3 and m =4
island cases.

The resonant cases are more unstable than non-resonant cases for the same island width
(Fig.4). Moreover, beside the main unstable mode (with multiplicity 1 for the m = 2 islands and
with multiplicity 2 for the m = 3 islands) there are several other modes with lower growth rates.
The growth rates in terms of helical Alfvén frequency a)ih = (Whmax — l,tlh,mm)z /(a*p) increase
with the width of the islands (Table 1).
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3 Discussion
The numerical stability calculations with the MHD_NX code show ideal MHD n;, = O tilt-

type instability of the chains of magnetic islands in the equilibria with circular cross-section
and resonant values of &. At the same time the islands generated by the plasma geometry per-
turbation in the non-resonant equilibria demonstrate destabilization with increasing o even for
m > 2 geometry induced island chains. All that concerns the case of linear equilibrium solu-
tions in large aspect ratio case with f ~ const. The helically symmetric equilibrium solutions
that are relevant to RFP experiments are essentially nonlinear with non-constant longitudinal

magnetic field function f. The investigation of the RFP equilibrium stability with islands and

self-organized single magnetic axis equilibria [2] are subjects of future work.

Figure 3. (a) Level lines of helical flux yy, for the equilibrium with non-resonant m = 3 islands
o =26.5, A =2.1; (b) arrow plot and streamlines of plasma displacement & projection onto
(u,v) plane and contour plot of &, @* /w3, = —0.15; ¢) helical flux W, for the equilibrium with
non-resonant m = 4 islands oo = 41, A = 1.75; (d) plasma displacement, ®* / a)jh = —0.24.

Figure 4. (a) Level lines of helical flux y;, for the equilibrium with resonant m = 2 islands
a =26.5, A=2.1, H=0.04; (b) plasma displacement, ®* ] ®3, = —0.87; c) helical flux y,
for the equilibrium with resonant m = 3 islands oo =41, A = 1.75, H = 0.04; (d) plasma
displacement, ®* / wfh =—-0.51.

H for . =26.5,A=2.1{0.01 | 0.02 | 0.04
—0?/03, 0.18 | 0.39 | 0.87
H for o =41,A=1.75 | 0.01 | 0.02 | 0.04
—w*/w}, 0.18 | 0.29 | 0.51

Table 1. Normalized squared growth rates —@?/ a)ih for two equilibria with circular cross-
section and resonant helical islands vs the amplitude of the helical eigenfunction H.
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