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Introduction

Neoclassical tearing modes (NTMs) are plasma instabilities characterised by the formation and

evolution of so-called magnetic islands. They can limit tokamak performance by enhancing

radial transport of particles and heat, which reduces core plasma pressure and temperature. If

the mode is allowed to grow, it could substantially reduce the fusion power in future tokamaks,

such as ITER. It is therefore necessary to develop systems to control NTMs in order to prevent

the growth of the modes.

Experimental observations show that the growth of small islands (typically O(1cm) in width) is

suppressed; they heal themselves and shrink away. One possible source of this threshold mech-

anism is the neoclassical polarisation current, which is generated when an island propagates

through the plasma. Because of the difference in ion and electron inertia (mi�me), an electro-

static potential is generated to satisfy quasineutrality, resulting in the E×B drift of the particles.

However, because of the difference in the ion and electron Larmor radii (ρLi � ρLe), the two

particle species experience different orbit-averaged E×B drift, resulting in a net current. This

is the classical picture of the polarisation current, relevant when the island width is comparable

in size to the ion Larmor radius. In toroidal geometry, a fraction of the particles are trapped.

These trapped particles are in closed orbits, whose width is characterised by the banana width,

ρb. Again, because ρbi� ρbe, this also results in a net current: the neoclassical polarisation cur-

rent. Since ρb � ρL, the neoclassical contribution dominates the classical counterpart, except

perhaps in the vicinity of the island separatrix.

Previous works have considered the contribution of the polarisation current to the island evo-

lution in the limit of large island width (compared to the trapped ion banana width) [1, 2].

However, the physics of polarisation current is not well-understood when the two length scales

are comparable, in the full toroidal geometry with trapped particle population. Furthermore, the

contribution to the polarisation current from the narrow layer surrounding the island separatrix

opposes that away from the island, nearly cancelling each other out [3]. In order to develop

an effective NTM control system for ITER, it is essential to determine the overall sign of the

polarisation current, and understand the physics that governs it. In this paper, we report on the

progress of the theoretical development to determine the full contribution of the polarisation
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current in the tokamak toroidal geometry. We describe a new numerical algorithm and code

to solve the drift kinetic equation for the ion response to the island perturbation, expanding

the perturbed distribution function in the small ratio of the island width to the tokamak minor

radius.

Ion Response

The drift kinetic equation describes the ion response to the magnetic island perturbation:

v‖∇‖ f +vE .∇ f +vb.∇ f − ωc

Bv

[
v‖∇‖Φ+vb.∇Φ

] ∂ f
∂v

=C( f ), (1)

where vE is the E×B drift velocity and vb = −v‖×∇(v‖/ωc) is the magnetic drift velocity.

Φ is the electrostatic potential and C( f ) is the model collision operator. In order to solve this

equation for the perturbed ion distribution function, we expand the solution in terms of the small

ratio of island width to the tokamak minor radius:

f = ∑
j

∆
j f j, ∆ =

w
r
. (2)

Then, working in the coordinate (ψ,θ ,ξ ), where ψ is the poloidal magnetic flux, θ is the

poloidal angle (coordinate along the equilibrium magnetic field lines) and ξ is the helical angle

which labels the equilibrium field lines, the leading order (O(∆0)) contributions to the drift

kinetic equation are:

v‖
Rq

∂ f0

∂θ

∣∣∣∣
ψ

−
Iv‖
Rq

∂

∂θ

(
v‖
ωc

)
∂ f0

∂ψ
= 0, (3)

where f0 is the leading order perturbed ion distribution function. This can be written more com-

pactly by introducing the particle orbit coordinate in terms of the toroidal canonical momentum,

pφ :

pφ = (ψ−ψs)− ρ̂, ρ̂ =
I(ψ)v‖

ωc
, (4)

where ψs is the poloidal flux at the rational surface where the island is located, I = RBφ , ωc is

the ion gyrofrequency, v‖ = σv(1−λB)1/2 is the parallel velocity and λ = v2
⊥/v2B is the pitch

angle. In the new particle orbit coordinate system (pφ ,θ ,ξ ), the leading order contribution to

the drift kinetic equation reduces to:

v‖
Rq

∂ f0

∂θ

∣∣∣∣
pφ

= 0. (5)
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Therefore, by writing the solution as a function of pφ , we can eliminate the θ -dependence of

f0: f0 = f̄0(pφ ,ξ ,v,λ ). Not only is this consistent with the assumption that the system is treated

as axisymmetric, but it allows us to reduce the dimensions of the problem to 4-D.

The exact solution to f0 is determined from the O(∆1) contribution to the drift kinetic equation:

v‖
Rq

∂ f1

∂θ

∣∣∣∣
pφ

+
mv‖
Rq

(
1− q

qs

)
∂ f0

∂ξ
−

Iv‖
Rq

∂

∂θ

(
v‖
ωc

)
∂

∂θ

(
Iv‖
ωc

)
∂ f0

∂ pφ

+vE .∇ f0 +vb.∇ξ
∂ f0

∂ξ
− ωc

Bv

[
v‖∇‖Φ+vb,∇Φ

] ∂ f0

∂v
=C( f0). (6)

In the previous analytic works, the drift kinetic equation (1) was further expanded in terms of

the small ratio of the ion banana width to the island width, δ = ρb/w; the O(δ 1∆0) equation

determined g00 through a constraint equation, and O(δ 1∆1) equation determined g10 (see below

for the set of analytic solutions). When the island width is comparable to the ion banana width,

however, the ratio δ is no longer small, and the entire equation (6) must be solver for f0 for an

arbitrary ion banana width. For passing particles, the term in f1 can be eliminated by multiplying

Eq.(6) by Rq/v‖, integrating over a period in θ at fixed pφ (i.e. along the particle orbits) and

applying the condition: f1(θ = −π) = f1(θ = +π). For trapped particles, the conservation of

particles at the bounce points imply: f1(σ =−1,θ =±θb) = f1(σ =+1,θ =±θb), where σ is

the sign of v‖. Hence, for the trapped particles, the term in f1 can be eliminated by multiplying

Eq.(6) by Rq/|v‖|, summing over σ and integrating over θ between the bounce points. For both

passing and trapped particles, the result is a 4-D integro-differential equation for f0:

C1
∂ f0

∂ pφ

+C2
∂ f0

∂ξ
+C3

∂ f0

∂v
−Cii( f0) = 0, (7)

where C1 ∼C3 are θ -averaged coefficients (functions of pφ , ξ , v and λ ), Cii( f0) is the model

collision operator for ion-ion collisions:

Cii( f ) = 2νii(v)

[
(1−λB)1/2

B
∂

∂λ

(
λ (1−λB)1/2 ∂ f

∂λ

)
+

v‖ū‖
v2

th

]
, (8)

ū‖( f ) =
1

n{νii(v)}v

∫
d3v v‖νii(v) f (v), (9)

and ū‖ is the momentum conservation term (note that the differentials in λ are at constant ψ).

Before solving this equation for f0, it is useful to recall the set of analytic solutions [1]:
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f0 =

(
1− eΦ

T

)
FM +g00 +g10, (10)

g00 =
FM

n
dn
dψ

(ω−ωT
∗ )

ω∗
[ψ−h(Ω)] , g10 =−

Iv‖
ωc

[
∂g00

∂ψ
+

FM

n
dn
dψ

ωT
∗

ω∗

]
+ h̄. (11)

Here, g00 describes the leading order ion response to the perturbed magnetic geometry, and

g10 corresponds to the first order banana width expansion of FM +g00, as well as an additional

response, h̄, which is determined from collisional effects. Here, the coordinate Ω is constant

on the perturbed flux surfaces of the magnetic island. Since this solution is valid in the limit

of small banana width, or equivalently, away from the magnetic island (w� |r− rs|), it can be

used as a boundary condition for our new numerical calculation. Hence, by separating f0 into

the analytic solution: Fa(= FM + g00 + g10) and the as yet unknown numerical solution, g, the

constraint equation (7) then becomes an inhomogeneous equation of the form:

C1
∂g

∂ pφ

+C2
∂g
∂ξ

+C3
∂g
∂v
−Cii(g) = D(Fa). (12)

Then, the boundary condition on g is that its gradient, ∂g/∂ pφ , tends to zero away from the

island (|r− rs| → ∞), but shifted by a constant amount, which would account for O(ρ2
b ) correc-

tion.

Computer Code Development

A new parallelised computer code has been developed to solve Eq.(12) as a matrix equation:

M.g = D, where M describes the 4-D differential operator, g is the solution vector and D is the

right hand side vector in terms of Fa. An initial version of the code has been developed for com-

parison with previous analytic results. This neglects the term in total velocity differential (the

term in C3), and the geometry is reduced to simpler toroidal geometry with circular poloidal

cross-section and large tokamak aspect ratio. In addition, the challenging task of implement-

ing quasineutrality is omitted for the time being (this requires iterating over the calculation of

the electrostatic potential - another computational challenge). The code is current undergoing

benchmarking, with results anticipated soon.
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