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Introduction

Neoclassical tearing modes (NTMs) are plasma instabilities characterised by the formation and
evolution of so-called magnetic islands. They can limit tokamak performance by enhancing
radial transport of particles and heat, which reduces core plasma pressure and temperature. If
the mode is allowed to grow, it could substantially reduce the fusion power in future tokamaks,
such as ITER. It is therefore necessary to develop systems to control NTMs in order to prevent
the growth of the modes.

Experimental observations show that the growth of small islands (typically O(1cm) in width) is
suppressed; they heal themselves and shrink away. One possible source of this threshold mech-
anism is the neoclassical polarisation current, which is generated when an island propagates
through the plasma. Because of the difference in ion and electron inertia (m; > m,), an electro-
static potential is generated to satisfy quasineutrality, resulting in the E x B drift of the particles.
However, because of the difference in the ion and electron Larmor radii (pz; > pre), the two
particle species experience different orbit-averaged E x B drift, resulting in a net current. This
is the classical picture of the polarisation current, relevant when the island width is comparable
in size to the ion Larmor radius. In toroidal geometry, a fraction of the particles are trapped.
These trapped particles are in closed orbits, whose width is characterised by the banana width,
Pp- Again, because pp; > Ppe, this also results in a net current: the neoclassical polarisation cur-
rent. Since pp > pr, the neoclassical contribution dominates the classical counterpart, except
perhaps in the vicinity of the island separatrix.

Previous works have considered the contribution of the polarisation current to the island evo-
lution in the limit of large island width (compared to the trapped ion banana width) [1, 2].
However, the physics of polarisation current is not well-understood when the two length scales
are comparable, in the full toroidal geometry with trapped particle population. Furthermore, the
contribution to the polarisation current from the narrow layer surrounding the island separatrix
opposes that away from the island, nearly cancelling each other out [3]. In order to develop
an effective NTM control system for ITER, it is essential to determine the overall sign of the
polarisation current, and understand the physics that governs it. In this paper, we report on the

progress of the theoretical development to determine the full contribution of the polarisation
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current in the tokamak toroidal geometry. We describe a new numerical algorithm and code
to solve the drift kinetic equation for the ion response to the island perturbation, expanding
the perturbed distribution function in the small ratio of the island width to the tokamak minor
radius.

Ion Response

The drift kinetic equation describes the ion response to the magnetic island perturbation:
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where vg is the E x B drift velocity and v, = —v| x V(v /@) is the magnetic drift velocity.

® is the electrostatic potential and C(f) is the model collision operator. In order to solve this
equation for the perturbed ion distribution function, we expand the solution in terms of the small
ratio of island width to the tokamak minor radius:
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Then, working in the coordinate (y,0,&), where v is the poloidal magnetic flux, 0 is the
poloidal angle (coordinate along the equilibrium magnetic field lines) and & is the helical angle
which labels the equilibrium field lines, the leading order (O(A®)) contributions to the drift

kinetic equation are:
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where f is the leading order perturbed ion distribution function. This can be written more com-

pactly by introducing the particle orbit coordinate in terms of the toroidal canonical momentum,
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where Y is the poloidal flux at the rational surface where the island is located, I = RBy, @, is

1/2 s the parallel velocity and A = v2 /v?B is the pitch

the ion gyrofrequency, v = ov(1 — AB)
angle. In the new particle orbit coordinate system (py, 8, &), the leading order contribution to

the drift kinetic equation reduces to:

—0. (5)
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Therefore, by writing the solution as a function of py, we can eliminate the 6-dependence of
fo: fo= fo(pe,&,v,A). Not only is this consistent with the assumption that the system is treated
as axisymmetric, but it allows us to reduce the dimensions of the problem to 4-D.

The exact solution to f; is determined from the O(A!) contribution to the drift kinetic equation:
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In the previous analytic works, the drift kinetic equation (1) was further expanded in terms of
the small ratio of the ion banana width to the island width, § = pj, /w; the O(S§'A%) equation
determined g% through a constraint equation, and O(8'A!) equation determined g'° (see below
for the set of analytic solutions). When the island width is comparable to the ion banana width,
however, the ratio 0 is no longer small, and the entire equation (6) must be solver for f; for an
arbitrary ion banana width. For passing particles, the term in f| can be eliminated by multiplying
Eq.(6) by Rq/v|, integrating over a period in 6 at fixed py (i.e. along the particle orbits) and
applying the condition: f1(6 = —m) = f1(0 = +m). For trapped particles, the conservation of
particles at the bounce points imply: fj(c = —1,0 = +6,) = fi(0c =+1,0 = +6,), where T is
the sign of v|. Hence, for the trapped particles, the term in f; can be eliminated by multiplying
Eq.(6) by Rq/ |VH |, summing over ¢ and integrating over 6 between the bounce points. For both

passing and trapped particles, the result is a 4-D integro-differential equation for fy:
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where C; ~ C3 are G—averaged coefﬁ01ents (functions of py, &, vand 1), Cji(fp) is the model
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collision operator for ion-ion collisions:
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and | is the momentum conservation term (note that the differentials in A are at constant y).

Before solving this equation for fy, it is useful to recall the set of analytic solutions [1]:



40" EPS Conference on Plasma Physics P5.153

ed
fo= (1—7) Fu+8"+g", (10)
Fo d T i [90° Fudnoll -
OOZ_M_"MW_MQ)], g10:__” o8 iman o | 5 (11)
ndy . | dy  n dy o,

Here, g% describes the leading order ion response to the perturbed magnetic geometry, and
g'0 corresponds to the first order banana width expansion of Fy; + g%, as well as an additional
response, h, which is determined from collisional effects. Here, the coordinate Q is constant
on the perturbed flux surfaces of the magnetic island. Since this solution is valid in the limit
of small banana width, or equivalently, away from the magnetic island (w < |r — ry|), it can be
used as a boundary condition for our new numerical calculation. Hence, by separating f into
the analytic solution: F,(= Fy + g% + ¢'°) and the as yet unknown numerical solution, g, the
constraint equation (7) then becomes an inhomogeneous equation of the form:
d d
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Then, the boundary condition on g is that its gradient, dg/dpy, tends to zero away from the

J
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island (|r — ry| — o), but shifted by a constant amount, which would account for O(p?) correc-
tion.

Computer Code Development

A new parallelised computer code has been developed to solve Eq.(12) as a matrix equation:
M.g = D, where M describes the 4-D differential operator, g is the solution vector and D is the
right hand side vector in terms of F,. An initial version of the code has been developed for com-
parison with previous analytic results. This neglects the term in total velocity differential (the
term in C3), and the geometry is reduced to simpler toroidal geometry with circular poloidal
cross-section and large tokamak aspect ratio. In addition, the challenging task of implement-
ing quasineutrality is omitted for the time being (this requires iterating over the calculation of
the electrostatic potential - another computational challenge). The code is current undergoing

benchmarking, with results anticipated soon.
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