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1. Introduction. Stability of the resistive wall modes (RWMs) is often studied by using the
dispersion relation

yr =-W,_ /W, (@))
proposed in [1] or its kinetic modifications [2]. Here the perturbed energies without and with

ideal wall, W_ and W, , are calculated as volume integrals over the whole space, including the

plasma and outer regions. Accordingly, a plasma model is introduced from the very

beginning to find W_ and W,, which requires a knowledge of a full dynamics of the

perturbed state. In [1], the plasma is treated as subject to the ideal MHD constraints.
Alternatively, the growth rate can be found from the energy balance outside the plasma
[3, 4]. It follows from the Poynting theorem plus boundary conditions that

F=dw®"/dt+D, (2)

m

where out denotes the space behind the wall inner surface S, (the wall and outer vacuum),

D= [j-Edv, F= {P-ds, =—d(W, +W5")/dt, ©)

out wall-

W, W2 and W™ are, respectively, the plasma energy, magnetic energy in the plasma-wall

pl»
vacuum gap and in the outer volume (in the RWM theory the plasma kinetic energy is

disregarded), and P =ExB with E the electric field and B =B, + b the magnetic induction.
When all perturbations vary in time as oc exp(3t) , the dispersion relation is [3, 4]

Dy, =2(F, -Wa) (4)
where F,=F/(2y) and D, =D/y*. Efficiency of such approach was proved by

incorporation of the thick-wall effects into analysis of the fast RWM [3, 4], while (1) is
applicable in the thin-wall limit only (for slow RWMs).

Equations (1) and (4) are evidently different. Here we discuss this and other
differences, inherent constraints of the models, and establish the relations between the
approaches [1] and [3, 4].
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2. Formulation of the problem. We consider the system: toroidal plasma — vacuum gap —
resistive wall — outer vacuum region. Following [1], we represent the potentials ¢ and ¢,
of the magnetic perturbation b =V ¢ in the plasma-wall gap and in the outer vacuum region
as a superposition of two solutions without wall (or wall at infinity) and with ideal wall, ¢,
and ¢, , each satisfying the Laplace equation:
P =Cp, +Cp, P, =G0, ()
with constant ¢; and the boundary conditions on the plasma surface (n , is the unit normal)
N, -Vo,=n,-Vg,=n_,-Vo_ (6)
and n,-Vg, =0 at the wall (n,, is the unit normal to S, ). These conditions are satisfied at
c,+¢C,=1, C, =Cj, (7)
if the wall is assumed magnetically thin as in [1]: n,-V@ =n,, -V, . Now we use (5)—(7) to
transform (4) so that we could compare it with (1).
3. Transformation of (4). In the thin-wall approximation, E must be almost constant across
the wall. Then for a wall with uniform thickness d we find from the Ohm’s law in the simple
form j=oE with o =const (the same model as used in [1]):

y’D, = [j-EdV =od {E%dS, . (8)

wall wall

On the right hand side of (4) we have [4]
2F,=Fly=- {pb-ds,, 2W'=[b’dV=- {pb-ds,, 9)

wall- out wall+

where F, was transformed by using VxE =—db/ot and the equality
ExVf =-Vx fE+ fVxE, (10)
integration of which over a closed surface nullifies the first term. Then with b, =V¢,_ and a

consequence of (5) that ¢, —p_=—c,q, at the wall, we obtain

2(F,-Wo')= {p.b-dS,— fpb-ds,=—{fccpb, -ds,. (12)

wall+ wall- wall

Here Eq. (7) and the boundary condition n,-V¢, =0 have been used. In the thin-wall

approximation, the integrals in (11) are evaluated on the same surface denoted wall.
Substituting (8) and (11) into (4) we obtain
yodb =c, /¢, (12)
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where b is a measure of the average radius of the vacuum chamber introduced by Eq. (68) in
[1]. In our notation with E/c, exactly the same as —y9A , in [1] we have
E2

2.2
Cl

b {p,b,-ds, =—§ ds,, . (13)

wall wall }/

4. Calculation of c,/c, in terms of energies. With (1) as a target for comparison we have to

express c,/c, in (12) via W, and W, related to the plasma energy W, by
R W =W, +W ) =-W,, (14)
R W =-W,S + W) =-W,. (15)
Here FP' =F* /(2y) with F the energy flux through the plasma surface,

FP'= {P.dS, =—dw,/dt, (16)

plasma

which is similar to the flux F through the wall in (3), and

W =- {p,b,-dS,, 2W® =~ {pb,-ds, (17)

plasma plasma
define the magnetic energies W and W."” outside the plasma for solutions b_ =Ve¢, and
b, = V¢, with boundary conditions (6). To transform the left hand sides of (14) and (15) we
use the equalities

d (b2 ab
Fr— [ SV == f(o-p,) S, (18)

plasma
where b, =V¢_ and =0 or b. Then with p—¢, =C@, +C,@, —(C, +C,)p, we obtain

c,/c,=—W,_/W,, (19)
so that (12) turns into

yodb =W, /W, . (20)
Finally, with “resistive diffusion time of the wall” 7, = odb defined by Eq. (66) in [1] we
convert the dispersion relation (20) into the form (1). That was the main goal of our analysis.
5. Cylindrical estimate of z,. In RWM studies the “wall time” 7, = odr,, is often used
instead of 7. To find their relation we consider a plasma cylinder surrounded by a coaxial
resistive wall and a single mode with m>0, see [4]. In this case, we have for the radial
component b] = Re[b, (r,t)exp(im@—ing)] of low-m magnetic perturbations

b, =g(x"™"-x"", b, =hx"", (21)
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where x=r/r,. It follows from (6) that g(x;;"* — x5 ") =hx;"*. Then b"' =—b, /(1-x]T"),
which is the contribution to b, from wall, and, approximately,
@, = (r/m)(b" —b") = (r/m)(2b;" ~b,) (22)

with b, = V¢, . Now the integral on the left hand side of (13) turns into

§¢bb°° ’ dSW = (2rW/m) §bt?mboodsw ==

wall wall

b2dS,, . (23)
m(l )will
To transform the right hand side of (13), from VxE=—-adb/ot in cylindrical geometry we

have OE, /06— (r, /R))OE, /0 =—pm, b, . For systems with r, /R, <<1 this yields

r, ob’
E, xyp2L—2=, 24
Then with (24) and E* = E§ the right hand side of (13) for E=cE_ can be written as
r: o,
WaII _Fwil?wdsw . (25)
Substituting (23) and (25) into (13) we obtain
b=r,@-x2")/2m, 7o =7, (1=X5")/2m. (26)

Such cylindrical 7 is often used in numerical calculations even for toroidal systems [5-7].

6. Discussion. Here we have proved that dispersion relation (1) proposed in [1] can be
obtained from (4) within the approach [3, 4] if the constraints of [1] are imposed. These are
expressed by equations (5), which can be justified in the cylindrical model, and thin-wall

boundary conditions ¢, =c, with E assumed constant across the wall, see Egs. (45) and (56)

in [1]. Precisely, Egs. (1) and (4) are equivalent for slow RMWs (magnetically thin resistive

wall) and the ideal plasma. Eq. (4), however, is valid in a wider area in » and for nonideal
plasma too, where Eq. (1) cannot be used. The analysis here is performed for real »
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