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1. Introduction. Stability of the resistive wall modes (RWMs) is often studied by using the 

dispersion relation  

 bD WW /  (1) 

proposed in [1] or its kinetic modifications [2]. Here the perturbed energies without and with 

ideal wall, W  and bW , are calculated as volume integrals over the whole space, including the 

plasma and outer regions. Accordingly, a plasma model is introduced from the very 

beginning to find W  and bW , which requires a knowledge of a full dynamics of the 

perturbed state. In [1], the plasma is treated as subject to the ideal MHD constraints.  

Alternatively, the growth rate can be found from the energy balance outside the plasma 

[3, 4]. It follows from the Poynting theorem plus boundary conditions that  

 DdtdWF out

em  , (2) 

where out denotes the space behind the wall inner surface wS  (the wall and outer vacuum),  

  
out

dVD Ej ,         dtWWddF gap

empl

wall

w )(  


SP , (3) 

plW , gap

emW  and out

emW  are, respectively, the plasma energy, magnetic energy in the plasma-wall 

vacuum gap and in the outer volume (in the RWM theory the plasma kinetic energy is 

disregarded), and BEP   with E  the electric field and bBB  0  the magnetic induction. 

When all perturbations vary in time as )exp( t , the dispersion relation is [3, 4]  

 )(2 0

out

emw WFD  , (4) 

where )2/(0 FF   and 2DDw  . Efficiency of such approach was proved by 

incorporation of the thick-wall effects into analysis of the fast RWM [3, 4], while (1) is 

applicable in the thin-wall limit only (for slow RWMs).  

Equations (1) and (4) are evidently different. Here we discuss this and other 

differences, inherent constraints of the models, and establish the relations between the 

approaches [1] and [3, 4].  
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2. Formulation of the problem. We consider the system: toroidal plasma – vacuum gap – 

resistive wall – outer vacuum region. Following [1], we represent the potentials    and   

of the magnetic perturbation b  in the plasma-wall gap and in the outer vacuum region 

as a superposition of two solutions without wall (or wall at infinity) and with ideal wall,   

and b , each satisfying the Laplace equation: 

 bcc  21   ,                3c  (5) 

with constant ic  and the boundary conditions on the plasma surface ( pln  is the unit normal) 

    plbplpl nnn  (6) 

and 0 bw n  at the wall ( wn  is the unit normal to wS ). These conditions are satisfied at  

  121  cc ,            31 cc  , (7) 

if the wall is assumed magnetically thin as in [1]:    ww nn . Now we use (5)–(7) to 

transform (4) so that we could compare it with (1). 

3. Transformation of (4). In the thin-wall approximation, E  must be almost constant across 

the wall. Then for a wall with uniform thickness d  we find from the Ohm’s law in the simple 

form Ej   with const  (the same model as used in [1]):  

   
wall

w

wall

w dSddVD 22
EEj  . (8) 

On the right hand side of (4) we have [4] 

  


 
wall

wdFF Sb/2 0 ,       


 
wall

w

out

out

em ddVW Sbb 22 , (9) 

where 0F  was transformed by using t /bE  and the equality  

  EEE  fff ,  (10) 

integration of which over a closed surface nullifies the first term. Then with   b  and a 

consequence of (5) that bс  2   at the wall, we obtain 

    









wall

wb

wall

w

wall

w

out

em dccddWF SbSbSb  210 )(2 . (11) 

Here Eq. (7) and the boundary condition 0 bw n  have been used. In the thin-wall 

approximation, the integrals in (11) are evaluated on the same surface denoted wall. 

Substituting (8) and (11) into (4) we obtain  

 12 /ccbd  ,  (12) 
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where b  is a measure of the average radius of the vacuum chamber introduced by Eq. (68) in 

[1]. In our notation with 1/ cE  exactly the same as  A  in [1] we have 

   

wall

w

wall

wb dS
c

db
2

1

2

2




E
Sb . (13) 

4. Calculation of 12 / cc  in terms of energies. With (1) as a target for comparison we have to 

express 12 /cc  in (12) via W  and bW  related to the plasma energy plW  by  

  

  WWWWF plvv

pl )( )()(

0 , (14) 

  bpl

b

v

b

v

pl WWWWF  )( )()(

0 . (15) 

Here )2/(0 plpl FF   with plF  the energy flux through the plasma surface,  

  dtdWdF pl

plasma

pl

pl /  SP , (16) 

which is similar to the flux F  through the wall in (3), and  

    



plasma

plv dW Sb)(2 ,             
plasma

plbb

b

v dW Sb)(2  (17) 

define the magnetic energies )(

vW  and )(b

vW  outside the plasma for solutions   b  and 

bb b  with boundary conditions (6). To transform the left hand sides of (14) and (15) we 

use the equalities  

  pl

plasmavac

pl d
t

dV
dt

d
F S

bb




  )(

2

2


  , (18) 

where  b  and   or b . Then with   )( 2121 cccc b    we obtain  

  bWWcc 12 / , (19) 

so that (12) turns into  

  bWWbd  . (20) 

Finally, with “resistive diffusion time of the wall” bdD    defined by Eq. (66) in [1] we 

convert the dispersion relation (20) into the form (1). That was the main goal of our analysis. 

5. Cylindrical estimate of D . In RWM studies the “wall time” ww dr   is often used 

instead of D . To find their relation we consider a plasma cylinder surrounded by a coaxial 

resistive wall and a single mode with 0m , see [4]. In this case, we have for the radial 

component )]exp(),(Re[  inimtrbbr   of low- m  magnetic perturbations  

  )( 11   mm

b xxgb ,      1

 
mhxb , (21) 
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where wrrx / . It follows from (6) that 111 )(   m

pl

m

pl

m

pl hxxxg . Then )1/( 2m

pl

out

b xbb   , 

which is the contribution to bb  from wall, and, approximately,  

 )2)(/())(/(  bbmrbbmr outinout    (22) 

with  b . Now the integral on the left hand side of (13) turns into 

  
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2
)/2(Sb . (23) 

To transform the right hand side of (13), from t /bE  in cylindrical geometry we 

have r

ww brERrE    /)/(/ 0 . For systems with 1/ 0 Rrw  this yields 

 


 







r

w b

m

r
E

2
. (24) 

Then with (24) and 22

EE  the right hand side of (13) for  EE 1c  can be written as 

  
wall

w
w

wall

w dSb
m

r
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c

2

2

2

2

1

2
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
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Substituting (23) and (25) into (13) we obtain  

 mxrb m

pw 2/)1( 2 ,        mx m

pwD 2/)1( 2 . (26) 

Such cylindrical D  is often used in numerical calculations even for toroidal systems [5–7]. 

6. Discussion. Here we have proved that dispersion relation (1) proposed in [1] can be 

obtained from (4) within the approach [3, 4] if the constraints of [1] are imposed. These are 

expressed by equations (5), which can be justified in the cylindrical model, and thin-wall 

boundary conditions 31 cc   with E  assumed constant across the wall, see Eqs. (45) and (56) 

in [1]. Precisely, Eqs. (1) and (4) are equivalent for slow RMWs (magnetically thin resistive 

wall) and the ideal plasma. Eq. (4), however, is valid in a wider area in   and for nonideal 

plasma too, where Eq. (1) cannot be used. The analysis here is performed for real  .  
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