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Validation of the numerical tools used for modeling of the fusion plasma is an important
step in the interpretation of experimental results. As several codes are usually used in the
fusion community to model the same plasma processes, prior verification of the codes should
be done in order to avoid discrepancies in the results treatment. Often numerical codes use
different post- and pre-processing routines, coordinate system conventions, etc. These make
such comparison complicated.

One of the main efforts within the Integrated Tokamak Modeling Task Force (ITM TF) is
the verification and validation of the existing numerical tools on the existing tokamak
experiments. The framework developed in ITM provides common standard interfaces for
accessing, storing and exchanging data. All codes integrated in the ITM framework use this
common interface which makes the verification process straightforward. Analysis of the
plasma equilibrium and MHD stability is one of the topics covered by the ITM. Several
equilibrium and MHD stability codes presently integrated in the ITM framework are verified
in this work including fixed boundary equilibrium codes CHEASE[1], HELENA[2],
SPIDER[3], CAXE[4] and linear MHD stability codes MARS[5], MARS-F[6] and KINX[4].
Reconstruction of the equilibrium for the JET the pulse #74221 using EQUAL[7] or EFIT[8]
codes is used as starting point of these studies. The steady state experimental scenario was
studied in the chosen pulse with high values of normalized beta observed (S up to 2.4 see fig.
Ic). The pulse was terminated by a disruption at 1=9.24 sec due to a loss of vertical control.

The studied operational scenario with such high values of Sy could be unstable to the ideal
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kink modes allowing verification of both equilibrium and linear stability codes using one set

of experimental conditions.
Verification of the fixed boundary equilibrium codes.

Verification of the CHEASE, HELENA, SPIDER and CAXE fixed boundary equilibrium
codes is presented in this section. All codes are solving Grad-Shafranov equation i.e. finding
the poloidal magnetic flux ¥ using the plasma boundary shape, current density and pressure

profiles obtained from the equilibrium reconstruction

code EQUAL or EFIT for these studies). The z a) |
~ —1F -
poloidal flux profile mapped on the flux coordinate =+ \WJ
-2
system (straight field line coordinates) is - o \b)
= 2551\ -
compared here together with the profiles of the =
—265E. ———
safety factor and pressure. A quantitative measure < z2r¢) Pl |
S \
of the accuracy of the results is used Ab(s) = = / i
< /
— 2 T8 b
/w where b(s) is the profile obtained e
1bg ()] g af €
S T
from the fixed boundary equilibrium code, by(s) — = ol —

time (sec)

profile obtained from the equilibrium reconstruction . .
' ' Fig. 1. Time traces of plasma
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plasma center respectively. JET pulse #74221 is used amplitude

for the verification. One time point t=9.799 sec is chosen prior to the disruption. The profiles
of the safety factor, pressure and poloidal flux as a functions of s obtained from the EQUAL
reconstruction for the chosen equilibrium are shown on fig. 2a,b,c together with the same
profiles obtained from the different fixed boundary equilibrium codes. Although profiles look
the same qualitatively, quantitative comparison using the measure introduced above shows
different accuracy for the different fixed boundary equilibrium codes (fig. 2d,e,f). The
observed differences in profiles could be caused by several factors including prescription of

the plasma boundary in the particular code (affecting the determination of the last close flux

surface) or (and) different numerical methods used (for example for numerical integration).
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Fig. 2. Comparison of the profiles and correspondent accuracies of the poloidal flux(a,d),
safety factor (b,e), pressure(c,f). Blue(circles)-EQUAL, red(squares)-CHEASE,
green(diamonds)-SPIDER, cyan(x)-HELENA, magenta(triangles)-CAXE.

Verification of the linear stability codes.

Equilibrium refined by the fixed boundary equilibrium codes is used for the verification of
the linear stability codes MARS, MARS-F and KINX. Equilibrium obtained by CHEASE is
used as input (in case of KINX further processed by CAXE). The linear stability of the n=1
mode is calculated and eigenvalues and eigenfunction profiles are compared. Convergence of
the results with respect to the number of grid points and to the number of poloidal harmonics
is examined prior to the comparison in order to exclude non-physical discrepancies. It is
found that the studied equilibrium is unstable for the ideal external kink. The eigenvalue
obtained depends on the initial equilibrium reconstruction used; the mode growth rate is
higher for the equilibrium reconstructed using EFIT code with kinetic constraints than that for

the equilibrium reconstructed with EQUAL code using only magnetic measurements.

MARS MARS-F KINX The external kink mode
EFIT+kinetic | 2.22e-02 2.23e-02 2.23e-02 eigenvalues obtained by the
EQUAL 2.78¢e-03 3.54e-03 2.10e-03 different stability codes for two

Table 1. Eigenvalues of the external kink mode obtained

by the different stability codes for the two equilibrium

reconstructions of JET pulse #74221, t=9.199 sec.

Table. 1. Eigenvalues are normalized to Alfvén time in the plasma center. It is seen that the

equilibrium reconstructions
(marked EFIT+kinetic and
EQUAL) are presented in the

results depend on the equilibrium used (results are more robust for more unstable case
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EFIT+kinetic). It is found that the stability calculations are sensitive to the equilibrium details
near the stability boundary (EQUAL case).

The profiles of the first ten positive poloidal Fourier harmonics (dominating the spectrum)
of the normal displacement &,=& Vi are shown on fig. 3 for the case EFIT+kinetic. Profiles
are scaled using the maximum value of the dominant harmonic (m=2) for one stability code

(KINX) as scaling parameter. Such scaling
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boundary equilibrium codes and linear

stability codes was performed for a JET pulse within ITM framework. The verification

rocedure becomes straightforward using the Fig. 3. Poloidal Fourier components
p u g ward using (m=1-10) of the normal displacement ¢,.

standard format for data flow and storage Blue — KINX, red — MARS-F, green —
implemented in the ITM. Different accuracy ~ MARS.

of the equilibrium solution for different equilibrium codes is observed quantitatively. It is
found that the equilibrium details are important for the stability calculations near the stability

boundary.
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