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Introduction Relativistic runaway electron distributions are strongly anisotropic in

velocity space. Due to this anisotropy they can give rise to electromagnetic waves via a

resonant interaction, which in turn can cause the velocity-space scattering of runaway

electrons. Previous studies considered the destabilization and evolution of the whistler

wave (whistler wave instability, WWI), which indeed leads to rapid pitch-angle scattering

of the runaways [1]. However, in a recent paper it was shown that runaways can destabilize

the so-called extraordinary electron (EXEL) wave with several orders of magnitude lower

runaway density than needed for the WWI in a low electric field case [2]. It is interesting

to analyze what effect the EXEL wave could have on runaway beam formation in the

presence of a high electric field, typical of tokamak disruptions.

Growth rate The waves investigated are described by their wave dispersion in a ho-

mogeneous, magnetized, cold plasma approximation [3]:[(
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where the frequently used electromagnetic approximation, ϵ33 ≫ n2 cosθ sinθ was relaxed.

Here k is the wave number, k∥ denotes its part parallel to the static magnetic field, ω is

the wave frequency, c is the speed of light, ϵij are the elements of the dielectric tensor.

As it was previously shown in Ref. [2], one of the branches of the above dispersion

relation, the extraordinary electron (EXEL) wave, is prone to destabilization by the

anisotropic runaway electron distribution much easier than the whistler wave. The EXEL

wave propagates with frequencies ω ≃ ωpe for low magnetic fields, but its dispersion

changes slightly for high magnetic fields (Fig. 1ab). Figure 1c shows the linear growth

rate of the EXEL wave for an avalanching runaway distribution, valid for high electric

fields, taken from Ref. [4].
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Figure 1: (a) Dispersion of the two lowest frequency branches (electron-whistler [5] and EXEL

wave) for two magnetic field values, (b) Normalized dispersion of the EXEL wave (ω/ωpe) for dif-

ferent magnetic fields, (c) Growth rate of the EXEL wave (ln[γi/ωce]). The parameters are ther-

mal electron density ne = 5 ·1019 m−3, effective charge Z = 1, runaway density nr = 3 ·1017 m−3,

Coulomb logaritm lnΛ = 18 and normalized maximum runaway momentum pmax = 30.

Figure 2: Stability thresholds

for the EXEL wave in high

electric field for different run-

away beam radii (Lr) for Te =

20 eV temperature, ne = 5 ·

1019 m−3, Z = 1, pmax = 30.

The wave number space for the EXEL wave can be di-

vided into two parts: the low wave number region where

ω0 > k∥c and the high wave number region where ω0 < k∥c.

By calculating the growth rate in both regions we find that

it is orders of magnitude higher in the latter region. As the

k∥c=ω0 line is approached the growth rate increases. At the

same time, the momentum of the runaways needed for the

destabilization of the wave (resonant momentum) becomes

higher. Thus, the most unstable EXEL wave is destabilized

by the maximum energy runaways. For a runaway electron

distribution with maximum runaway energy 15 MeV corre-

sponding to pmax = 30, the parameters of the most unsta-

ble wave are wave-number k∼ 3000 m−1, propagation angle

θ ∼ 1.0 and frequency ω0 ∼ 5 ·1011 s−1.

Comparing the growth rate of the EXEL wave to collisional [6] and convective damping

[1] yields a critical runaway density needed for the destabilization of the most unstable

wave. Figure 2 gives the critical densities for the EXEL wave for the avalanching distri-

bution from Ref. [4]. In agreement with previous results in the low electric field case [2],

the number of runaway electrons needed for destabilization is significantly lower for the

EXEL wave also in the high electric field case considered in this paper.
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Quasi-linear analysis In the ultrarelativistic limit γ ≃ |p∥|, the effect of the EXEL

wave on the runaway distribution is given by the following diffusion equation [1,3]: ∂f
∂τ =
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′) is a quasi-linear diffusion coef-

ficient [1]. D̃ depends on the wave energy and polarization, and is calculated along the

kres(θ) resonant curve, which is the solution of (ω0+ωce/p∥−k∥c) = 0 for a fix p∥ value.

The main difference from the analysis in Ref. [1] is the polarization of the wave, which for
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The numerical scheme solving the above equations is as follows: For each p∥ value in

each time step the linear growth rate of the EXEL wave is calculated along the kres(θ)

resonant curve. The wave energy is determined as the solution of ∂Wk/∂t=2γl(t)Wk, with

the initial condition Wk(t= 0) = kBTe/2, which is the energy level of thermal fluctuations.

The wave energy is then integrated along the resonant curve together with the polarization

vector, resulting in the diffusion coefficient. The time integral of this diffusion coefficient

is the dimensionless time, τ(p∥). Solving the diffusion equation, the time evolution of the

runaway distribution can be given as a function of τ(p∥).

Figure 3 shows the time evolution of the runaway distribution. The destabilization of the

EXEL wave results in the momentum-space scattering of runaways to higher perpendicu-

lar momentum. This effect starts around the maximum runaway momentum (pmax = 30),

then moves to lower values. After the wave becomes stable (its growth rate minus the

damping rates turns negative), the wave energy starts to decrease and it has no effect on

the distribution until the second destabilization of the wave. When the runaway distri-

bution once again grows to high enough amplitude to destabilize the wave, it will have

a second scattering effect on the runaways. This means that there is a periodic effect on

the runaway distribution: each destabilization of the EXEL wave causes the momentum-

space scattering of the runaways, followed by a phase when the wave is stable and the

distribution can grow until another destabilization of the wave. Note that the time-scale

of this resonant interaction is very short.

Conclusions The high-frequency EXEL wave can be destabilized by significantly less

runaways than the whistler wave previously investigated in Ref. [1,4]. This means that in

a tokamak disruption it should be destabilized well before the whistler wave. When the

EXEL wave grows to high enough energy, it causes the momentum-space scattering of the

runaway electrons. If the resonant interaction is sufficiently strong, it may even limit the

number of runaway electrons. It may be possible to detect the phase-space scattering of
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the runaways by analyzing their synchrotron spectrum, as high momentum runaways have

significant effect on it. As the critical density for this interaction is lower for low magnetic

fields, signs of the phase-space scattering should be easier to find for low magnetic fields.

Detection of these waves, or signs of the resonant interaction would give indications about

the possibility of stopping the runaway beam formation via waves in ITER.

Figure 3: Quasi-linear evolution of the runaway distribution and the wave energy of the EXEL

wave. Red and blue lines correspond to the wave energy along the kres resonant curve as a

function of θ for a fix pres. The runaway momentum, p is normalized with mec. The displayed

time corresponds to the time elapsed since the first destabilization of the most unstable wave.

The parameters are B = 2 T, ne = 5 ·1019 m−3, Z = 1, Te = 20 eV and pmax = 30.
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