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Introduction Relativistic runaway electron distributions are strongly anisotropic in
velocity space. Due to this anisotropy they can give rise to electromagnetic waves via a
resonant interaction, which in turn can cause the velocity-space scattering of runaway
electrons. Previous studies considered the destabilization and evolution of the whistler
wave (whistler wave instability, WWT), which indeed leads to rapid pitch-angle scattering
of the runaways [1]. However, in a recent paper it was shown that runaways can destabilize
the so-called extraordinary electron (EXEL) wave with several orders of magnitude lower
runaway density than needed for the WWT in a low electric field case [2]. It is interesting
to analyze what effect the EXEL wave could have on runaway beam formation in the

presence of a high electric field, typical of tokamak disruptions.

Growth rate The waves investigated are described by their wave dispersion in a ho-

mogeneous, magnetized, cold plasma approximation [3]:
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where the frequently used electromagnetic approximation, ez > n?cosfsinf was relaxed.

Here k is the wave number, k| denotes its part parallel to the static magnetic field, w is
the wave frequency, c is the speed of light, €;; are the elements of the dielectric tensor.
As it was previously shown in Ref. [2], one of the branches of the above dispersion
relation, the extraordinary electron (EXEL) wave, is prone to destabilization by the
anisotropic runaway electron distribution much easier than the whistler wave. The EXEL
wave propagates with frequencies w ~ wp. for low magnetic fields, but its dispersion
changes slightly for high magnetic fields (Fig. lab). Figure 1c shows the linear growth
rate of the EXEL wave for an avalanching runaway distribution, valid for high electric

fields, taken from Ref. [4].
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Figure 1: (a) Dispersion of the two lowest frequency branches (electron-whistler [5] and EXEL
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wave) for two magnetic field values, (b) Normalized dispersion of the EXEL wave (w/wpe) for dif-
ferent magnetic fields, (¢) Growth rate of the EXEL wave (In[y;/wee]). The parameters are ther-

mal electron density n, =5-10" m=3, effective charge Z =1, runaway density n, = 3-10'" m=3,
Coulomb logaritm In A = 18 and normalized maximum runaway momentum pmax = 30.

The wave number space for the EXEL wave can be di- _ BXEL wave, E=40 V/m
vided into two parts: the low wave number region where ol | @ =otm |
wg > k;Hc and the high wave number region where wy < kHc. — . -'_-.
By calculating the growth rate in both regions we find that ’“; ot - "o
it is orders of magnitude higher in the latter region. As the ) Lol _.-"'...“.
kjjc = wp line is approached the growth rate increases. At the ..
same time, the momentum of the runaways needed for the 10]40 R R

destabilization of the wave (resonant momentum) becomes B
higher. Thus, the most unstable EXEL wave is destabilized Figure 2: Stability thresholds

by the maximum energy runaways. For a runaway electron for the EXEL wave in high

distribution with maximum runaway energy 15 MeV corre- electric field for different run-

sponding to pmax = 30, the parameters of the most unsta- away beam radii (Ly) for Te =

20 eV temperature, ne = 5 -

10 m™3, Z =1, pmax = 30.

ble wave are wave-number k ~ 3000 m~ !, propagation angle
6 ~ 1.0 and frequency wo ~ 5- 10" s71.

Comparing the growth rate of the EXEL wave to collisional [6] and convective damping
[1] yields a critical runaway density needed for the destabilization of the most unstable
wave. Figure 2 gives the critical densities for the EXEL wave for the avalanching distri-
bution from Ref. [4]. In agreement with previous results in the low electric field case [2],
the number of runaway electrons needed for destabilization is significantly lower for the

EXEL wave also in the high electric field case considered in this paper.
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Quasi-linear analysis In the ultrarelativistic limit v =~ [p|, the effect of the EXEL

wave on the runaway distribution is given by the following diffusion equation [1,3]: af =

1 9 f 'D " "
IR (pL 6m> Here 7(p)|) fo dt'D(py,t') and D(p”, ) is a quasi-linear diffusion coef-

ficient [1]. D depends on the wave energy and polarization, and is calculated along the
kres(0) resonant curve, which is the solution of (w4 wee/ p|— kHc) =0 for a fix p| value.

The main difference from the analysis in Ref. [1] is the polarization of the wave, which for

2 2
the EXEL wave is (1, Ey/Ey, E./E;) = (1 WheWee /wo kyk.c ]
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The numerical scheme solving the above equatlons is as follows: For each p| value in
each time step the linear growth rate of the EXEL wave is calculated along the kyes(6)
resonant curve. The wave energy is determined as the solution of OW}, /0t = 27,(t) W}, with
the initial condition Wi (t =0) = kpT./2, which is the energy level of thermal fluctuations.
The wave energy is then integrated along the resonant curve together with the polarization
vector, resulting in the diffusion coefficient. The time integral of this diffusion coefficient
is the dimensionless time, T(pH). Solving the diffusion equation, the time evolution of the
runaway distribution can be given as a function of T(pH).

Figure 3 shows the time evolution of the runaway distribution. The destabilization of the
EXEL wave results in the momentum-space scattering of runaways to higher perpendicu-
lar momentum. This effect starts around the maximum runaway momentum (pmax = 30),
then moves to lower values. After the wave becomes stable (its growth rate minus the
damping rates turns negative), the wave energy starts to decrease and it has no effect on
the distribution until the second destabilization of the wave. When the runaway distri-
bution once again grows to high enough amplitude to destabilize the wave, it will have
a second scattering effect on the runaways. This means that there is a periodic effect on
the runaway distribution: each destabilization of the EXEL wave causes the momentum-
space scattering of the runaways, followed by a phase when the wave is stable and the
distribution can grow until another destabilization of the wave. Note that the time-scale

of this resonant interaction is very short.

Conclusions The high-frequency EXEL wave can be destabilized by significantly less
runaways than the whistler wave previously investigated in Ref. [1,4]. This means that in
a tokamak disruption it should be destabilized well before the whistler wave. When the
EXEL wave grows to high enough energy, it causes the momentum-space scattering of the
runaway electrons. If the resonant interaction is sufficiently strong, it may even limit the

number of runaway electrons. It may be possible to detect the phase-space scattering of
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the runaways by analyzing their synchrotron spectrum, as high momentum runaways have
significant effect on it. As the critical density for this interaction is lower for low magnetic
fields, signs of the phase-space scattering should be easier to find for low magnetic fields.
Detection of these waves, or signs of the resonant interaction would give indications about
the possibility of stopping the runaway beam formation via waves in ITER.
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Figure 3: Quasi-linear evolution of the runaway distribution and the wave energy of the EXEL
wave. Red and blue lines correspond to the wave energy along the kys resonant curve as a
function of 0 for a fix pres- The runaway momentum, p is normalized with mec. The displayed
time corresponds to the time elapsed since the first destabilization of the most unstable wave.

The parameters are B=2T, ne=5-10" m™3, Z=1, T. =20 eV and pmax = 30.

Acknowledgments This work, supported by the European Communities under the contract
of association between EURATOM, Vetenskapsradet and the Hungarian Academy of Sciences,
was carried out within the framework of the European Fusion Development Agreement. The
views and opinions expressed herein do not necessarily reflect those of the European Commission.

The corresponding author acknowledges the support of a JNEA grant.

References

[1] G. Pokol et al., Plasma Phys. Control. Fusion 50, 045003 (2008).

[2] A. Kémar et al., J. Phys. Conf. Series 401, 012012 (2012).

[3] T. H. Stix, Waves in plasmas, American Institute of Physics, New York (1992).
[4] T. Fiilop et al., Phys. Plasmas 13, 062506 (2006).

[5] A. Kémér et al., Phys. Plasmas 20, 012117 (2013).

[6] M. Brambilla, Phys. Plasmas 2, 1094 (1995).



