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In this work we present the new results of numerical investigation of mass-transfer
processes in correlated systems within the wide range of parameters, corresponding to the
conditions of experiments in laboratory dusty plasmas. The diffusion is the main mass-transfer
process, which defines the energetic losses (dissipation) in the system and its dynamical
characteristics. In case of small deviations of the considered homogeneous system from the
statistical equilibrium, its diffusion coefficient D can be derived from the time dependences of

the mass-transfer evolution functions Dgx(?) and D,,(¢): D =lim D, (¢) and D =lim D, (¢),
—> 1—>0

respectively, where Dgk(?) = I<VX OV (¢ ')>dt ', D(f) =< (x)*>/(21). Here <Vy(0)V(£)> is an
0

autocorrelation function of the grains’ velocities, ¢ is the time, V' = V. (f) = dxj/dt is the velocity
of j-th particle in the certain direction X, x = x;(?) is the displacement of the j-th particle along
one coordinate, and the brackets <> denote the ensemble and time averaging (the averaging over
all time intervals with the duration 7). [1-4]. To describe the Brownian motion, the Langevin
system of equations with the random force F,,, is usually used [2-4]. In this case, the
displacement of a j-th grain along the chosen coordinate x = x;(f) for the time ¢ in a
homogeneous quasi-equilibrium medium under an action of some potential force F), is

described by the solution of the following system of differential equations [2-4]:

d’x dx
M7=_Mvﬁ_

+F,+F,,. (1)

The cases of non-interacting particles (/, = 0) and a single Brownian particle in the
linear harmonic trap (F, = — Mao.*x) were considered in [2, 4-7]. Nevertheless, these cases, as
well as the other existing analytical approaches, don’t imply the description of the transition
from the ballistic to the diffusive regime for the system of interacting grains (with the nonzero
interparticle interaction potential @), and the role of the number of these grains N, #1 in their
Brownian motion [1-4, 7-10].

To describe the motion of interacting particles in a liquid (D+#0), we need to take into

account the dependence of the force F), in the system (1) from the fluctuations of electrical field
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OFE, which are induced by the thermal motion of grains with a charge Q. To the first
approximation this force can be introduced as F, = — Q3F and described by the equation

OF, /0t = - 2Mw,V — GF),, Q)
where o is the characteristic frequency of fluctuations of the electric field caused by the thermal
motion of interacting particles, which is defined by their mobility coefficient. The solution of

equations (1) and (2) gives for V' = V,(¢)

sz dV 2 dFran
Mdt_zz_M(vﬁ +G)7—M(2(DC +Ver)V+Gan+ dt . (3)
Further, assuming <F,., Vx(0)> = 0 [3, 4] and the boundary conditions <x* (+=0)> =0;
d<x2> 2 .
7| =03 <V0V>| =M, I<V J >dt =D, we get the solution
0

<x2(t)>:2q( t _l—exp(—(y—wl)t)}rzcz( t _1—exp(—(y+a)l)t)]’ "

Y — O (v _(’31)2 Y+, (v +(’01)2
where y =(c+vs;)/2, o = " - {2(1)c2+GVfr N2, (CHC)=T/M, and (Ci/{y -o}+Caf/{y

+m; })=D. Using the relationship (4), we can obtain the both mass-transfer evolution functions
1d(x*) ) . .
as Dgk(f) = > and D,,(t) = <(x)">/(2t). In case ¢ = 0, m, # 0 this solution for Dgk(?) and

D,,(¢f) transforms in the known relationships for the harmonic oscillator (D = 0); and when =0
and o, = 0, it fully corresponds the case of non-interacting grains, where D = D,,. The value of ¢
can be obtained from the Egs. (1) and (3) after averaging and some simple mathematical
manipulations:

bo DM | T
* DMy, IT’ ©)
For the numerical simulation we used the Langevin molecular dynamics method, based
on the solution of the system of N, ordinary differential equations of motion (where N, is the
number of particles in the calculation cell), taking into account the Langevin force F\,, and the
forces of pair interparticle interaction Fiy. The simulation technique is detailed in [8]. The
simulations were made for the Yukawa systems with the screening parameters k = rp/A =1 + 4
(where r, = (Np/S)” 2 §is the square of the simulated cell for two-dimensional systems, and rp=
(Ny/ V)", ¥V is the volume of the simulated cell for three-dimensional systems, respectively).
The calculations were carried out for the homogeneous three-dimensional system and
for the two-dimensional system simulating the extensive dust layer; the periodical boundary

conditions were used. In the first case the number of independent particles N, in the central cell
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was varied from 250 to 686; accordingly, the potential of the interparticle interaction was cut on
the distance rey ~ 4rp - 8. For the simulation of the extensive dust layer the number of
independent particles in the central cell N, was varied from 256 to 4096. Dependent on the
number of particles, the cut-off length 7 varied from 5r, to 25r,. The main calculations were

performed for N, = 1024 independent particles with the cut-off length of potential 7y = 127y,
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Fig.1. The functions D¢ (Vvj 1)/D, for the numerical experiments in 2D-structures, x =2 (bold black lines) and
parameters & =1, I"'=45 (a) and £ =0.125, I"=10 (b). The gray lines denote the proposed analytical approximations; the
fine black lines — the case of the harmonic oscillator (¢ =0, D = 0), the dotted line — the solution (4) at ¢ =0 and D=0.

It is easy to see that the analytical curves describe the evolution of mass-transfer functions
pretty well, including the dynamics of the transition between the ballistic and diffusive regimes, in
contrast to the harmonic approximation, which fits well on short observation times only (see Figs
1(a), 1(b)). The same figures 1(a), 1(b) show the functions Dgg(v;t), obtained by solving Eq. (4)
with o = 0 and D # 0, which give only approximate qualitative/quantitative picture of evolution of
the grains motion to the diffusive regime. Nevertheless, we should note that the proposed
approximation (4) even with o # 0 (5) doesn’t include the possibility of development of
additional high-frequency oscillations in correlated systems with I'"" > 2-3. These oscillations
can be easily observed at low friction & > 8% and their formation can result from the
emerging of longitudinal and transverse modes in low-dissipative media [11]. Note also that the
oscillations in these systems (&. > 8%) practically don’t show up in the behavior of functions
Dy(1), see Fig. 2.

The best agreement with the analytical model was observed for the strongly dissipative

Y %). In case of strongly correlated structures with the low friction (&, > gV %), the

systems (. < 8
more detailed quantitative analysis of the behavior of mass-transfer evolution functions should

be done, taking into account the spatial dependence of fluctuations of the electrical field.
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Fig.2. The functions D,,(1)/D, for the numerical experiments in 3D — structures (bold black lines), I = 80, k =3 with
the parameters & = 0.4, v; =10 s (1)and £ =0.04, v; =100 s (2). The gray lines denote the proposed analytical
approximations.

This work was partially supported by the Russian Foundation for Basic Research (Projects No.
11-02-01333, 12-08-31284 and No. 13-08-00263-a), by the Ministry of Education and Science
of Russian Federation and by the Program of the Presidium of RAS.

1. Ya.l Frenkel', Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946).
S. Chandrasekhar, Rev. Mod. Phys. 15(1), 1 (1943).

o

3. Photon Correlation and Light Beating Spectroscopy, H.Z. Cummins and E.R. Pike, Eds. (Plenum, New
York, 1974).

4. A.A. Ovchinnikov, S.F. Timashev, A.A. Belyy, Kinetics of Diffusion Controlled Chemical Processes, Nova
Science Publishers, Commack, New York, 1989.

B. Luki¢ al., PRL 95, 160601(2005)

T. Liet al., Science 328, 1673 (2010)

O.S. Vaulinaet al., PRE 77, 066403 (2008)

Complex and Dusty Plasmas, edited by V.E. Fortov and G.E. Morfill (CRC Press, 2010);

O 0 =2

S. Vladimirov, K. Ostrikov, A. Samarian, Physics and Applications of Complex Plasmas (Imperial College,
London, 2005)
10. O.S. Vaulinaal., “Evolution of the mass-transfer processes in non-ideal dissipative systems. II. Experiments
in dusty plasma)”, PRE 77, 066404 (2008)
11.  H. Ohta and S. Hamaguchi, Phys. Plasmas 7, 4506 (2000)



