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In this work we present the new results of numerical investigation of mass-transfer 

processes in correlated systems within the wide range of parameters, corresponding to the 

conditions of experiments in laboratory dusty plasmas. The diffusion is the main mass-transfer 

process, which defines the energetic losses (dissipation) in the system and its dynamical 

characteristics. In case of small deviations of the considered homogeneous system from the 

statistical equilibrium, its diffusion coefficient D can be derived from the time dependences of 

the mass-transfer evolution functions DGK(t) and Dm(t): )(lim tDD GKt 
  and )(lim tDD mt 

 , 

respectively, where DGK(t) = 
t

xx dttVV
0

')'()0( , Dm(t) =< ( x)2>/(2t).  Here  <Vx(0)Vx(t)> is an 

autocorrelation function of the grains’ velocities, t is the time, V = Vx (t)  dxj/dt  is the velocity 

of  j-th particle in the certain direction x,  x = xj(t) is the displacement of the j-th particle along 

one coordinate, and the brackets < > denote the ensemble and time averaging (the averaging over 

all time intervals with the duration t). [1-4]. To describe the Brownian motion, the Langevin 

system of equations with the random force Fran is usually used [2-4]. In this case, the 

displacement of a j-th grain along the chosen coordinate x = xj(t) for the time t in a 

homogeneous quasi-equilibrium medium under an action of some potential force Fp is 

described by the solution of the following system of differential equations [2-4]:  
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The cases of non-interacting particles (Fp = 0) and a single Brownian particle in the 

linear harmonic trap (Fp = – Mc
2x) were considered in [2, 4-7]. Nevertheless, these cases, as 

well as the other existing analytical approaches, don’t imply the description of the transition 

from the ballistic to the diffusive regime for the system of interacting grains (with the nonzero 

interparticle interaction potential ), and the role of the number of these grains Np 1 in their 

Brownian motion [1-4, 7-10]. 

To describe the motion of interacting particles in a liquid (D0), we need to take into 

account the dependence of the force Fp in the system (1) from the fluctuations of electrical field 
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E, which are induced by the thermal motion of grains with a charge Q. To the first 

approximation this force can be introduced as Fp = – QE and described by the equation 

      Fp /t = – 2Mc
2V –  Fp,     (2) 

where  is the characteristic frequency of fluctuations of the electric field caused by the thermal 

motion of interacting particles, which is defined by their mobility coefficient. The solution of 

equations (1) and (2) gives for V = Vx(t) 
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VdM ran
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Further, assuming <Fran Vx(0)> = 0 [3, 4] and the boundary conditions <x2 (t=0)> =0; 

0
0
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where  =(+fr )/2, 1 = (2 - {2c
2+fr  })1/2, (C1+C2)=T/M, and (C1/{ -1}+C2/{ 

+1})=D. Using the relationship (4), we can obtain the both mass-transfer evolution functions 

as DGK(t) = 
dt
xd 2

2
1   and Dm(t) = <(x)2>/(2t). In case  = 0, c  0 this solution for DGK(t) and 

Dm(t) transforms in the known relationships for the harmonic oscillator (D = 0); and when  = 0  

and c = 0, it fully corresponds the case of non-interacting grains, where D = Do. The value of  

can be obtained from the Eqs. (1) and (3) after averaging and some simple mathematical 

manipulations:  
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For the numerical simulation we used the Langevin molecular dynamics method, based 

on the solution of the system of Np ordinary differential equations of motion (where Np  is the 

number of particles in the calculation cell), taking into account the Langevin force Frаn and the 

forces of pair interparticle interaction Fint. The simulation technique is detailed in [8]. The 

simulations were made for the Yukawa systems with the screening parameters   rp/ = 1  4 

(where rp = (Np/S)1/2,  S is the square of the simulated cell for two-dimensional systems, and rp = 

(Np/V)1/3,   V is the volume of the simulated cell for three-dimensional systems, respectively). 

The calculations were carried out for the homogeneous three-dimensional system and 

for the two-dimensional system simulating the extensive dust layer; the periodical boundary 

conditions were used. In the first case the number of independent particles Np in the central cell 
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was varied from 250 to 686; accordingly, the potential of the interparticle interaction was cut on 

the distance rcut ~ 4rp - 8rp.  For the simulation of the extensive dust layer the number of 

independent particles in the central cell Np was varied from 256 to 4096. Dependent on the 

number of particles, the cut-off length rcut varied from 5rp to 25rp. The main calculations were 

performed for Np = 1024 independent particles with the cut-off length of potential  rcut = 12rp. 
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Fig.1. The functions DGK(fr t)/Do for the numerical experiments in 2D–structures,  =2 (bold black lines) and 
parameters  =1, Г*= 45 (a) and  =0.125, Г*=10 (b). The gray lines denote the proposed analytical approximations; the 
fine black lines – the case of the harmonic oscillator ( =0, D = 0), the dotted line – the solution (4) at  =0 and D0.  

 

It is easy to see that the analytical curves describe the evolution of mass-transfer functions 

pretty well, including the dynamics of the transition between the ballistic and diffusive regimes, in 

contrast to the harmonic approximation, which fits well on short observation times only (see Figs 

1(a), 1(b)). The same figures 1(a), 1(b) show the functions DGK(frt), obtained by solving Eq. (4) 

with  = 0 and D  0, which give only approximate qualitative/quantitative picture of evolution of 

the grains motion to the diffusive regime. Nevertheless, we should note that the proposed 

approximation (4) even with    0 (5) doesn’t include the possibility of development of 

additional high-frequency oscillations in correlated systems with * > 2-3. These oscillations 

can be easily observed at low friction c > 8-1/2, and their formation can result from the 

emerging of longitudinal and transverse modes in low-dissipative media [11]. Note also that the 

oscillations in these systems (c > 8-1/2) practically don’t show up in the behavior of functions 

Dm(t), see Fig. 2.  

The best agreement with the analytical model was observed for the strongly dissipative 

systems (c < 8-1/2). In case of strongly correlated structures with the low friction (c > 8-1/2), the 

more detailed quantitative analysis of the behavior of mass-transfer evolution functions should 

be done, taking into account the spatial dependence of fluctuations of the electrical field. 
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Fig.2. The functions Dm(t)/Do for the numerical experiments in 3D – structures (bold black lines), Г* = 80,  =3 with 
the parameters   = 0.4, fr =10 s-1  (1) and  = 0.04, fr =100 s-1   (2). The gray lines denote the proposed analytical 
approximations. 

 

This work was partially supported by the Russian Foundation for Basic Research (Projects No. 

11-02-01333, 12-08-31284 and No. 13-08-00263-a), by the Ministry of Education and Science 

of Russian Federation and by the Program of the Presidium of RAS. 

 
1. Ya.I. Frenkel', Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946). 

2. S. Chandrasekhar, Rev. Mod. Phys. 15(1), 1 (1943). 

3. Photon Correlation and Light Beating Spectroscopy , H.Z. Cummins and E.R. Pike, Eds. (Plenum, New 

York, 1974). 

4. A.A. Ovchinnikov, S.F. Timashev, A.A. Belyy, Kinetics of Diffusion Controlled Chemical Processes, Nova 

Science Publishers, Commack, New York, 1989. 

5. B. Lukić al., PRL 95, 160601(2005) 

6. T. Li et al., Science 328, 1673 (2010) 

7. O.S. Vaulina et al., PRE 77, 066403 (2008) 

8. Complex and Dusty Plasmas, edited by V.E. Fortov and G.E. Morfill (CRC Press, 2010);  

9. S. Vladimirov, K. Ostrikov, A. Samarian, Physics and Applications of Complex Plasmas (Imperial College, 

London, 2005) 

10. O.S. Vaulina al., “Evolution of the mass-transfer processes in non-ideal dissipative systems. II. Experiments 

in dusty plasma)”, PRE 77, 066404 (2008) 

11. H. Ohta and S. Hamaguchi, Phys. Plasmas 7, 4506 (2000) 

40th EPS Conference on Plasma Physics P5.301


