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Abstract

Recent advancements in supercomputing capability make it possible to solve the Maxwell-

Boltzmann equation system in full six-dimensional phase space. While computationally

intensive, continuum models such as these present a viable alternative to particle-in-cell

methods because they can be cast in conservation-law form, are not susceptible to sampling

noise, and can be implemented using high-order numerical methods. A fourth-order accu-

rate method has been developed to solve the continuum kinetic Vlasov-Poisson model in

one spatial and one velocity dimension. The governing equation is solved in its conservation-

law form using a finite volume representation. Adaptive mesh refinement (AMR) is used

to allow for efficient use of computational resources while maintaining desired levels of

resolution. The model is tested on several plasma phenomena including: weak and strong

Landau damping and the two-stream instability.

Introduction
Due to recent advancements in supercomputing technology, full phase-space continuum meth-

ods have become a viable means of simulating nonlinear plasma kinetics. [1, 2, 3, 4, 6] Con-
tinuum methods are advantageous because they can be cast in conservation-law form and allow
for: straightforward parallelization based on domain decomposition; the use of adaptive mesh
refinement (AMR) techniques; and numerical methods that are high-order accurate in space
and time.[2] Parallel AMR can, in particular, be used to reduce the cost of a continuum multi-
dimensional Vlasov simulation by focusing computational resources in dynamic parts of the
domain. Moreover, continuum methods do not suffer from sampling-associated noise seen in
PIC methods [9] and can thus produce more physically accurate results.

The content of this paper investigates a fourth-order accurate numerical method for modeling
the electrostatic regime represented by the Vlasov-Poisson system in one spatial and one veloc-
ity dimension. The unsplit finite volume method is fourth-order accurate in time and space and
solves the system of equations in conservation-law form. The method is benchmarked against
analytic results for weak and strong Landau damping and the two-stream instability. Results
with adaptive mesh refinement are presented.

Vlasov-Poisson System and Underlying Assumptions
Plasma evolution timescales over which electrons are dynamic and ions remain static are

considered. In such a system there is only one evolving distribution function f (x,v, t) — that
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of the electrons. Assuming collisions have negligible effect means the plasma kinetics can be
modeled by the 1D Vlasov equation [7], which in conservation-law form is

0 =
∂ f
∂ t

+
∂

∂x
(v f )− e

m
∂

∂v
(E f ) , (1)

where e is the absolute value of the electron charge. In Eq. 1 only electrostatic forces are consid-
ered such that currents and magnetic fields are assumed to be negligible. The electric potential,
φ , is calculated using Poisson’s equation in one dimension, ∂ 2φ

∂x2 = −ρc
ε0

. Note that the electric
field is related to the gradient of the potential, E =−∇φ , and the charge density is defined as

ρc(x) = e
[

1−
∫

∞

−∞

f (x,v)dv
]
. (2)

The distribution function f (x,v) is normalized such that the net charge density over the entire
spatial domain is zero.

Discretization and Integration in Time
A fourth-order finite volume method is employed to advance the solution f (x,v) in time. The

algorithm is summarized below:

1. Initialize distribution function by fourth-order cell-average, denoted by 〈·〉:

〈 f 〉i, j = f 0(ihx, jhv)+
1

24

(
f 0
i+1, j−2 f 0

i, j + f 0
i−1, j

)
+

1
24

(
f 0
i, j+1−2 f 0

i, j + f 0
i, j−1

)
. (3)

2. Solve Poisson equation using fourth-order finite volume stencil. [8]

3. Compute cell-average electric field from the potential,

〈E〉i =−
8

12hx

(
〈φ〉i+1−〈φ〉i−1

)
+

1
12hx

(
〈φ〉i+2−〈φ〉i−2

)
. (4)

4. Compute fluxes and advance solution using fourth-order Runge-Kutta

d〈 f 〉i, j
dt

=− 1
hx

[
〈 f v〉i+ 1

2 , j
−〈 f v〉i− 1

2 , j

]
+

e
m

1
hv

[
〈 f E〉i, j+ 1

2
−〈 f E〉i, j− 1

2

]
. (5)

Single-Grid Simulation Results
The single grid algorithm described in the previous section is benchmarked against analytic

results from kinetic theory. A standard test case is to simulate weak Landau damping by initial-
izing a Maxwellian distribution in velocity space with a small position-dependent perturbation:

f (x,v)|t=0 =
1√
2π

exp
(
−v2

2

)
(1+acos(kx)) , (6)
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Linear theory slope = −0.3066

(a) Weak Landau damping
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(b) Strong Landau damping
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(c) Two-stream

Figure 1: Simulation results for (a) weak Landau damping, (b) strong Landau damping, and (c)
two-stream instability using a 256× 256 grid. The evolution of potential energy demonstrates
agreement with theoretical predictions.

with k = 0.5 and a= 0.01. In weak Landau damping, potential energy is transformed into kinetic
energy as indicated by a steady net decrease in the value of the former, shown in Fig. 1(a). In
strong Landau damping, the Maxwellian in Eq. 6 is given a large perturbation with amplitude
a = 0.5. In this case, the potential energy in the system evolves non-linearly. This evolution
is shown in Fig. 1(b). In both cases, the decay and growth rates in potential energy from the
simulation are shown to be in good agreement with theoretical predictions.

The algorithm is also used to simulate the two-stream instability. This simulation is initialized
using the following distribution function

f (x,v)|t=0 =
1√
2π

v2 exp
(
−v2

2

)
(1+acos(kx)) (7)

with k = 0.5 and a = 0.01. The spatial perturbation results in inhomogeneities in the electron
distribution that cause kinetic energy to be converted into potential energy. The growth rate
of the potential energy is consistent with the theoretically predicted value for the two-stream
instability, as shown in Fig. 1(c).

Two-stream Instability with Adaptive Mesh Refinement
Adaptive mesh refinement is implemented into the single-grid algorithm described above,

using the techniques described in Ref. [5]. As indicated in Eq. 2, the charge density is computed
by taking a velocity moment of the distribution function at each spatial location. To do this
on multiple levels of grids requires that additional interpolation steps be added to the AMR
algorithm. In particular, when computing the zeroth moment of f (x,v), the integral with respect
to velocity is performed using the finest grid information available in a given part of the domain.

As a demonstration of adaptive mesh refinement capability, the two-stream instability is sim-
ulated using a three-level adaptively refined grid. The evolution of the distribution function and
grid is shown in Fig. 2. The simulation uses a base grid of size 64× 64 with a factor of four
refinement for each successive level. Further analysis is required to evaluate the merits of AMR
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Figure 2: Two-stream instability at t = 0.2,18.1,22.1. AMR simulation with 64×64 base grid,
three levels of grid refinement, and a refinement ratio of four. Thus the smallest boxes indicate
regions of the domain that have sixteen times the resolution of the coarsest grid.

.

and to determine to what extent it reduces the computational cost of Vlasov-Poisson simula-
tions.

Conclusions
A fourth order accurate algorithm in space and time has been developed to solve the Vlasov-

Poisson system in one spatial and one velocity dimension. The simulation results demonstrate
close agreement with theoretical predictions, as tested on weak Landau damping, strong Landau
damping, and the two-stream instability. AMR is also demonstrated as a means of reducing
computational cost by focusing computational resources in dynamic regions of the domain.
Further work is needed to assess the speed-up offered by adaptive mesh refinement, specifically
as it applies in multiple dimensions. The described algorithm will also benefit from the use of
limiters, which will address dispersive oscillations and lack of positivity preservation that are
inherent to high-order finite volume calculations.
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