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Toroidal symmetry does not exist in real tokamaks because of the existence of the 

error fields, discrete toroidal magnetic field coils, and magnetohydrodynamic (MHD) 

activities. There are two mechanisms that break the toroidal symmetry in 

€ 

B  spectrum. One is 

the direction addition of the perturbed magnetic field to the equilibrium magnetic field [1]. 

Another is the surface distortion mechanism by recognizing that it is the 

€ 

B  spectrum on the 

distorted magnetic surface that is relevant to the transport processes [2,3]. Broken symmetry 

leads to enhanced particle, momentum, and energy transport losses. The asymptotic analysis 

of the linear drift kinetic equation has been used to calculate the toroidal plasma viscosity and 

the corresponding transport fluxes for thermal particles in tokamaks with broken symmetry. 

The theory consists of several asymptotic regimes depending on the collisionality, and its 

results are summarized in [4]. There is a steady state toroidal flow of the order of 

€ 

vti ρpi L  in 

all regimes in the theory [3], which can be used to control MHD stabilities. Here, 

€ 

vti is the 

ion thermal speed, 

€ 

ρpi is the ion poloidal gyro-radius, and L is the radial gradient scale length. 

Approximate analytic expressions for the neoclassical toroidal plasma viscosity have been 

constructed [5] and are in good agreement with the numerical solution of the bounce averaged 

drift kinetic equation [6,7]. One of the key assumptions of the theory is that the perturbed 

magnetic fields do not creating a new class of trapped particles. The transport fluxes in the 

low collisionality regime are caused by trapped particles, i.e., bananas, wobbling off the flux 

surface resulting from the perturbed magnetic field. The theory is also applicable for rippled 

tokamaks with negligible fraction of rippled trapped particles. 

 The energy transport loss rate increases with increasing particle energy in the theory 

[2-5]. Thus, energetic alpha particles are much more susceptible to broken symmetry in 

tokamaks. One of the distinct features in burning plasmas is self-heating from the fusion 

energy. In ignited burning plasmas, the fusion energy gain factor Q is infinity. To accomplish 

ignition, it requires that fusion born alpha particles transfer their energy to fueling plasmas 
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through the slowing down process. However, when the radial energy transport loss rate 

becomes comparable to the slow down rate, a significant portion of the fusion energy is lost 

before it has the opportunity to be deposited to the fuel plasmas. This limits the magnitude of 

the perturbed magnetic field strength.  To have an accurate estimate of the tolerable 

magnitude of the perturbed magnetic field strength, a transport theory for the fusion born 

alpha particles for tokamaks with broken symmetry is needed.  

 Because energetic alpha particles are rather collisionless, it is natural to bounce 

average the linear drift kinetic equation to focus on the drift orbit dynamics of wobbling 

bananas. Thus, the transport theory for energetic alpha particles is similar to the theory for the 

neoclassical toroidal plasma viscosity for thermal particles. If the radial electric field is 

determined by the thermal fuel plasmas, it has little influence on the orbit dynamics of the 

energetic alpha particles.  Thus, the dominant regimes are 

€ 

1 ν  [3], superbanana plateau [8], 

and superbanana regimes [9]. The superbanana plateau and superbanana regimes are caused 

by the superbanana resonance where the bounce averaged toroidal drift speed vanishes. The 

resonance occurs at the tips of the superbananas where the drift speed vanishes.  The physics 

associated with superbanana resonance has not been addressed in tokamaks with broken 

symmetry. It is neglected in the transport theory for rippled tokamaks [10]. The superbananas, 

discussed in [11], is from the resonance between the bounce motion and the drift motion. 

However, because particle drift speed is smaller than the bounce speed by a factor of 

€ 

ρα L , 

transport fluxes associated with drift orbit dynamics are more significant, where 

€ 

ρα  is gyro-

radius of energetic alpha particles. 

 One of the differences between the transport theory discussed here and the theory for 

the neoclassical toroidal plasma viscosity is in the collision operator. For energetic alpha 

particles, the slowing down operator is also important besides the pitch angle scattering 

operator. Here, we discuss the transport consequences when the pitch angle scattering process 

dominates. The fluxes when the slowing down operator dominates will be presented 

elsewhere.  

The Hamada coordinates are used in the theory in which the magnetic field is 

expressed as B = 

€ 

ʹ′ ψ 

€ 

∇V × ∇θ  - 

€ 

ʹ′ χ 

€ 

∇V × ∇ζ , where V is the volume enclosed inside the flux 

surface, 

€ 

θ  is the poloidal angle, 

€ 

ζ  is the toroidal angle, 

€ 

ʹ′ ψ  = 

€ 

B •∇ζ , and 

€ 

ʹ′ χ  = 

€ 

B •∇θ  [12]. 

The 

€ 

B  spectrum can be expressed in a compact form, B = 

€ 

B0

€ 

1−ε cosθ( ) - 

€ 

B0  

€ 

An θ( )cosnζ0 + Bn θ( )sinnζ0[ ]
n
∑ , where

€ 

B0  is the magnetic field strength on the magnetic axis, 
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€ 

ε  is the inverse aspect ratio, n is the toridal mode number, 

€ 

ζ0 = qθ -ζ is the field line label, 

and q is the safety factor.  

The drift orbit dynamics dominates the transport processes when the collisionality 

parameter 

€ 

ν* < 1. Here, 

€ 

ν* is defined as 

€ 

ν* = 

€ 

ν jRq ε j+1 2υα( ), where R is the major radius, 

€ 

υα  

is the typical speed of the energetic alpha particles, 

€ 

ν j  = 

€ 

νD , the deflection frequency for j = 

1, and 

€ 

ν j  = 

€ 

νs, the slowing down frequency for j = 0. The difference in the definitions for 

€ 

ν* 

results from the fact that there is no enhancement due to the smallness of 

€ 

ε  for the slowing 

down process, but there is for the pitch angle scattering.  

 The equation that governs drift orbit dynamics is the bounce averaged drift kinetic 

equation [13,14] 

 

€ 

vd •∇ζ0 b

∂f01
∂ζ0

 + 

€ 

vd •∇V
b

∂f01
∂V

 + 

€ 

vd •∇V
b

∂fs
∂V

= 

€ 

C f01( )
b
,   (1) 

where 

€ 

f01 is the first order correction to 

€ 

fs V( ) , the slowing down distribution, 

€ 

• b= 

€ 

dθ •( )B∫ | v|| |( ) dθB∫ | v|| |( )σ
∑ , 

€ 

σ is the sign of 

€ 

v|| , and 

€ 

v||  is the particle speed parallel to 

B,  Explicit expression for 

€ 

fs V( )  is [15] 

   

€ 

fs V( )  = 

€ 

Nα

4πv0
3

€ 

3
ln v0

3 + vc
3( ) vc3[ ]

€ 

H v0 − v( )
v3 + vc

3( ) v03
,  (2) 

where H is the step function, and the density for the energetic alpha particle is 

€ 

Nα = 

€ 

Sτsα 3( )

€ 

ln v0
3 + vc

3( ) vc3[ ] , where S = 

€ 

ND

€ 

ND

€ 

σFv  denotes the isotropic source of alpha 

particles from D-T fusion reactions that have a cross section 

€ 

σF , 

€ 

v  is the particle speed, 

€ 

v0  is 

the birth energy of alpha particles, The 

€ 

∂f01 ∂V  term in Eq.(1) is needed to describe 

superbanana orbits when energetic alpha particles are in the superbanana regime. The 

collision operator consists of pitch angle scattering and slowing down operators. The 

deflection frequency for pitch angle scattering operator for energetic alpha particles is 

€ 

νD  ≈ 

€ 

νD
αi ≈ 

€ 

νsα

€ 

vb
3 v3 is the deflection frequency. where 

€ 

vb
3  = 

€ 

3

€ 

π 2

€ 

Te
3 2 Mα Me( )

€ 

NiZi
2 lnΛ ii

∑( ) Ne lnΛe( )−1, and  

€ 

τsα =

€ 

νsα
−1 is the slowing down time for 

alpha particles. When 

€ 

v3  < 

€ 

vb
3 , pitch angle scattering operator dominates.  

The most important regime is the superbnana plateau regime for causing the largest 

transport losses. It appears when approximately 

€ 

δB B0( )3 2

€ 

ε−1 2

€ 

cMαυα
2 ʹ′ ε eα ʹ′ χ ( )  < 

€ 

νD  < 

€ 

cMαυα
2 ʹ′ ε eα ʹ′ χ ( ) . Because 

€ 

δB B0 << 1, this regime is nominally very broad in the collision 
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frequency domain. The energy transport coefficient 

€ 

χα  for energetic alpha particles in the 

superbanana plateau regime scales as [14] 

    

€ 

χα∼ 

€ 

ε

€ 

v0
2

Ωp

€ 

n

€ 

δB
B0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

,     (3) 

and the corresponding the energy confinement time 

€ 

τEα  is 

€ 

τEα∼ 

€ 

a2 χα , where 

€ 

Ωp  is the 

poloidal gyro-radius for alpha particles, and a is the minor radius. For averaged electron 

density 

€ 

Ne  ∼ 6.4 × 

€ 

1013

€ 

cm−3  and temperature 

€ 

Te ∼ 18keV, the slowing down time 

€ 

τ sα∼ 

1.2s. Thus, 

€ 

τEα  becomes comparable to 

€ 

τ sα  for an 

€ 

ε  = 1/3 tokamak with poloidal magnetic 

field strength 

€ 

Bp= 0.57T, and minor radius a = 2m, when 

€ 

δB /B0( )t  ∼ 

€ 

10−3 n . The result 

implies that the larger the toroidal mode number n is, the smaller the tolerable magnitude of 

€ 

δB /B0( )t  is. For 

€ 

n  

€ 

≥ 2, the tolerable 

€ 

δB /B0( )t  is about few times 

€ 

10−4 . This provides an 

estimate to the tolerable magnitude of 

€ 

δB /B0( )t  for the error fields or MHD activities that will 

not affect fusion energy gain factor Q significantly. 
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