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Toroidal symmetry does not exist in real tokamaks because of the existence of the
error fields, discrete toroidal magnetic field coils, and magnetohydrodynamic (MHD)
activities. There are two mechanisms that break the toroidal symmetry in |B| spectrum. One is
the direction addition of the perturbed magnetic field to the equilibrium magnetic field [1].
Another is the surface distortion mechanism by recognizing that it is the |B| spectrum on the
distorted magnetic surface that is relevant to the transport processes [2,3]. Broken symmetry
leads to enhanced particle, momentum, and energy transport losses. The asymptotic analysis
of the linear drift kinetic equation has been used to calculate the toroidal plasma viscosity and
the corresponding transport fluxes for thermal particles in tokamaks with broken symmetry.
The theory consists of several asymptotic regimes depending on the collisionality, and its

results are summarized in [4]. There is a steady state toroidal flow of the order of v, p,, /L in

all regimes in the theory [3], which can be used to control MHD stabilities. Here, v, is the

ion thermal speed, p,, is the ion poloidal gyro-radius, and L is the radial gradient scale length.

Approximate analytic expressions for the neoclassical toroidal plasma viscosity have been
constructed [5] and are in good agreement with the numerical solution of the bounce averaged
drift kinetic equation [6,7]. One of the key assumptions of the theory is that the perturbed
magnetic fields do not creating a new class of trapped particles. The transport fluxes in the
low collisionality regime are caused by trapped particles, i.e., bananas, wobbling off the flux
surface resulting from the perturbed magnetic field. The theory is also applicable for rippled
tokamaks with negligible fraction of rippled trapped particles.

The energy transport loss rate increases with increasing particle energy in the theory
[2-5]. Thus, energetic alpha particles are much more susceptible to broken symmetry in
tokamaks. One of the distinct features in burning plasmas is self-heating from the fusion
energy. In ignited burning plasmas, the fusion energy gain factor Q is infinity. To accomplish

ignition, it requires that fusion born alpha particles transfer their energy to fueling plasmas



41%* EPS Conference on Plasma Physics 02.102

through the slowing down process. However, when the radial energy transport loss rate
becomes comparable to the slow down rate, a significant portion of the fusion energy is lost
before it has the opportunity to be deposited to the fuel plasmas. This limits the magnitude of
the perturbed magnetic field strength. To have an accurate estimate of the tolerable
magnitude of the perturbed magnetic field strength, a transport theory for the fusion born
alpha particles for tokamaks with broken symmetry is needed.

Because energetic alpha particles are rather collisionless, it is natural to bounce
average the linear drift kinetic equation to focus on the drift orbit dynamics of wobbling
bananas. Thus, the transport theory for energetic alpha particles is similar to the theory for the
neoclassical toroidal plasma viscosity for thermal particles. If the radial electric field is
determined by the thermal fuel plasmas, it has little influence on the orbit dynamics of the
energetic alpha particles. Thus, the dominant regimes are 1/v [3], superbanana plateau [8],
and superbanana regimes [9]. The superbanana plateau and superbanana regimes are caused
by the superbanana resonance where the bounce averaged toroidal drift speed vanishes. The
resonance occurs at the tips of the superbananas where the drift speed vanishes. The physics
associated with superbanana resonance has not been addressed in tokamaks with broken
symmetry. It is neglected in the transport theory for rippled tokamaks [10]. The superbananas,
discussed in [11], is from the resonance between the bounce motion and the drift motion.
However, because particle drift speed is smaller than the bounce speed by a factor of p, /L,
transport fluxes associated with drift orbit dynamics are more significant, where p, is gyro-
radius of energetic alpha particles.

One of the differences between the transport theory discussed here and the theory for
the neoclassical toroidal plasma viscosity is in the collision operator. For energetic alpha
particles, the slowing down operator is also important besides the pitch angle scattering
operator. Here, we discuss the transport consequences when the pitch angle scattering process
dominates. The fluxes when the slowing down operator dominates will be presented
elsewhere.

The Hamada coordinates are used in the theory in which the magnetic field is
expressed as B = ¢/ VV xV0O - ¥ VV x VC, where V is the volume enclosed inside the flux
surface, 0 is the poloidal angle, £ is the toroidal angle, ¥ = B*V{,and ¥ = B* V0 [12].

The |B| spectrum can be expressed in a compact form, B = B,(1-gcosf) - B,

E[A” (6)cosng, + B, (6)sin nCO] , where B is the magnetic field strength on the magnetic axis,

n
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¢ is the inverse aspect ratio, n is the toridal mode number, §, = g0 - is the field line label,
and q is the safety factor.

The drift orbit dynamics dominates the transport processes when the collisionality
parameter v, < 1. Here, v. is defined as v, = V,Rq / (s"' +y 2va), where R is the major radius, v,
is the typical speed of the energetic alpha particles, v, = v,,, the deflection frequency for j =
1, and v; = v, the slowing down frequency for j = 0. The difference in the definitions for v.
results from the fact that there is no enhancement due to the smallness of ¢ for the slowing
down process, but there is for the pitch angle scattering.

The equation that governs drift orbit dynamics is the bounce averaged drift kinetic
equation [13,14]

o
b aCO

where f,, is the first order correction to f,(V), the slowing down distribution, (*),=

L

vy Vet VY) Lo (e(f)),- (1)

+ (v, *VV) o=

(v, * VL)

Ea(gﬁ d6(°)B/I \A I)/(gﬁ dBB/I \Z I) , o 1s the sign of v,, and v, is the particle speed parallel to
B, Explicit expression for f,(V) is [15]

_ N, 3 H(V0 - V)
M= mnf(vo +v2)/Vi| (v v2) v

where H is the step function, and the density for the energetic alpha particle is N, =

2)

(Srm/S) 1n[(v8+vi)/vi], where § = N, N, <O’FV> denotes the isotropic source of alpha

particles from D-T fusion reactions that have a cross section o, v is the particle speed, v, is
the birth energy of alpha particles, The df,,/dV term in Eq.(1) is needed to describe
superbanana orbits when energetic alpha particles are in the superbanana regime. The
collision operator consists of pitch angle scattering and slowing down operators. The

deflection frequency for pitch angle scattering operator for energetic alpha particles is v,, =
v ~ v, vi/V'is the deflection frequency. where v, =
3 m T:/Z/(MM/E) (E,Nizfz In A,.)(Ne lnAe)_l ,and =V, is the slowing down time for
alpha particles. When v’ < v, pitch angle scattering operator dominates.

The most important regime is the superbnana plateau regime for causing the largest
transport losses. It appears when approximately (5B/ BO)S/2 e’ cMavje’/ (ea X') < v, <

cMavje’/ (ea X')- Because 0B/B,<< 1, this regime is nominally very broad in the collision
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frequency domain. The energy transport coefficient ), for energetic alpha particles in the

superbanana plateau regime scales as [14]

2
e

p

oB\’

and the corresponding the energy confinement time t,, is 7,,~ a’/x,, where Q is the

poloidal gyro-radius for alpha particles, and a is the minor radius. For averaged electron
density <Ne> ~ 6.4 x 10” cm™ and temperature <7;>~ 18keV, the slowing down time 7, ~

1.2s. Thus, 7,, becomes comparable to 7, for an ¢ = 1/3 tokamak with poloidal magnetic
field strength B,= 0.57T, and minor radius a = 2m, when (5B/ Bo), ~ 107 / \/H . The result

implies that the larger the toroidal mode number = is, the smaller the tolerable magnitude of

(5B /Bo), is. For |n| = 2, the tolerable (5B /Bo), is about few times 10™*. This provides an

estimate to the tolerable magnitude of (5B/ Bo), for the error fields or MHD activities that will

not affect fusion energy gain factor Q significantly.

Acknowledgements

*This work was supported by National Science Council, Taiwan under Grant No. 100-2112-M-006-004-MY3
and the Department of Energy, USA under Grant No. DE-FG02-01ER54619.

References

[1] A.I. Smolyakov, A. Hirose, E. Lazzaro, B. G. Re, and J. D. Callen, Phys. Plasmas 2, 1581 (1995).

[2] K. C. Shaing, Phys. Rev. Lett. 87, 245003 (2001).

[3] K. C. Shaing, Phys. Plasmas 10, 1443 (2003).

[4] K. C. Shaing, M. S. Chu, C. T. Hsu, S. A. Sabbagh, J. Seol, and Y. Sun, Plasma Phys. Control. Fusion 54,
124033 (2012).

[5] K. C. Shaing, S. A. Sabbagh, and M. S. Chu, Nucl. Fusion 50, 025022 (2010)

[6] Y. Sun, Y. Liang, K. C. Shaing, H. R. Koslowski, C. Wiegmann, T. Zhang, Phys. Rev. Lett. 105, 145002
(2010).

[71 Y. Sun, K. C. Shaing, Y. Liang, B. Shen, and B. Wen, Nucl. Fusion 53,073026 (2013).

[8] K. C. Shaing, S. A. Sabbagh, and M. S. Chu, Plasma Phys. Control. Fusion 51, 035009 (2009).

[9] K. C. Shaing, S. A. Sabbagh, and M. S. Chu, Plasma Phys. Control. Fusion 51, 055003 (2009).

[10] P. N. Yushmanov, Review of Plasma Physics (Consultant Bureau, New York, London, 1987), Vol. 16.

[11] V. A. Yavorskij, Zh. N. Andrushchenko, J. W. Edenstrasser, and V. Ya Goloborod’ko, Phys. Plasmas 6.
3853 (1999).

[12] S. Hamada, Nucl. Fusion 2, 23 (1962).

[13]A. A. Galeev,R.Z. Sagdeev, H. P. Furth, and M. N. Rosenbluth, Phys. Rev. Lett. 22, 511 (1969).
[14] K. C. Shaing, and C. T. Hsu, Nucl. Fusion 54, 033012 (2014).

[15]J.D. Gaffey, Jr.,J. Plasma Phys. 16, 149 (1976).



