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L-H transition dynamics in plasma edge turbulence simulations
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Achieving a large energy confinement is critical to the viability of magnetic fusion. This
represents a great challenge as the plasma of magnetic machines is largely unstable, notably
due to the presence of large gradients, resulting in widespread turbulence and fast energy losses.
Experiments however show that under certain circumstances, the plasma self-organises into a
state characterised by large, localised E x B shear flows that quench turbulence, creating a
transport barrier. Such transport barriers provide an important gain in confinement, therefore
H-mode, characterised by an external transport barrier (ETB) near the edge of the plasma, is
used by the reference scenario for ITER and ulterior machines. Theoretical understanding of
the transition to H-mode remains however unresolved [1], putting large uncertainties on the
value of the L-H transition power threshold [2]. H-mode is furthermore often accompanied by
relaxation oscillations of the ETB called edge-localised modes (ELMs), which put significant
stresses on the plasma facing components if not mitigated, making full understanding of the
phenomenon all the more desirable.

In this work, we use flux-driven 3D simulations of edge turbulence to search for the mecha-
nism responsible for generating the mean flow causing the ETB. The extended reduced MHD
model used in the EMEDGE3D code to describe resistive ballooning (RBM) turbulence is the
following [3]:

IVio+{9.Vie} = —Vio—Gp+oiFneo+VviVie (1)

dhp+{9,p} = 8Go+xVip+x.Vip+S(x) ©)

This model is electrostatic and simulates turbulence in the edge, up to the last closed flux-
surface (LCFS). The scrape-off layer physics is not included. Equations (1,2) are respectively
the charge balance and energy balance, with the two fields ¢ and p being the electric potential
and the total pressure. V| and V| are respectively the parallel and perpendicular gradients with
respect to the magnetic field lines. It follows that Viq) is the vorticity of the E x B flow. G
is a toroidal curvature operator, and Poisson brackets {¢,-} account for the advection by the
electric drift velocity. In Eq.1, v accounts for the classical viscosity, while in Eq.2, ¥, and %
are respectively the perpendicular and parallel collisional heat diffusivities. The F,eo accounts

for collisional relaxation of the flow towards the neoclassical value due to friction between
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trapped and passing particles, and will be detailed below.

The system (1,2) is normalised as follows: time is normalised to the interchange time 7;,; =

Y \/I;CL with cg9 = 4 /n{))%i the typical acoustic speed and L), the typical pressure gradient length.

The perpendicular length scale is the resistive ballooning length &, = an

w1th the mag-
netic shear length L; being the parallel length scale. The fields ¢ and p are normahsed respec-
tively to 05””’ and ‘5”“’: 0

One can start the reasoning leading to the friction term F,., from the radial force balance
equation for ions. Here, in the framework of our model, we have to make several assumptions:
first, we consider the density as constant n = ng, and second we assume a constant ratio between
the ion and electron temperatures 7; = €r7,. Furthermore, we consider that toroidal rotation is

small (generally true in the absence of torque injection). The radial force balance is then written

thus:
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Where ¢ = ¢ — ¢ and p = p — p indicate flux-surface averaged quantities, with ¢ and j the

associated perturbations.

The neoclassical poloidal velocity is given by: i)’ = S:il %K (Vi) Oxp [4, 5], with
K (Vv; ) comprised between —2.1 in the Pfirsch-Schliiter regime and 1.17 in the banana regime
(in the limit of large aspect ratio), and varying sharply with collisionality between the two.

Eq.3 couples the pressure gradient and the E x B velocity d,¢. This coupling is then intro-

duced in Eq.1 through a heuristic closure, taking the form of a friction term [6, 7]:

Fneo - _.uneo( ) [a (P Kneo( )axp_] (4)

Through the coupling of the E x B velocity and the pressure gradient in F,.,, a feedback loop
can occur that would lead to strong flows and turbulence stabilisation: local stabilisation of
turbulence would cause a steepening of the pressure gradient, resulting in a strengthening of the
E x B shear flow, stabilising turbulence and further steepening the pressure gradient, with again
an effect on the flow. The coefficients u,., and K., influence greatly the shape of the E x B
velocity profile and control whether the feedback loop can produce a self-generated transport
barrier or not. Both coefficients ,., and K,., depend on the collisionality, i.e. in our model
on the flux-surface averaged pressure p, at each radial position and each time-step. Taking into
account those spatial and temporal variations is found to be a key element in our simulations,
allowing for the spontaneous formation of a transport barrier above a certain threshold of input

power (illustrated in Figure 1 and further discussed in [7]). Similar simulations using constant
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Figure 1: Pressure (left) and E x B velocity (right) radial profiles for different values of input power. These
profiles show the generation of a transport barrier above a threshold in Qg. The profiles are averaged over several

hundred interchange times.

Uneo and K., have not showed the generation of a transport barrier, despite a noticeable impact
of the friction term on the flow dynamics. As can be seen in Fig.1, when crossing the threshold
of input power, the E x B velocity profile changes from low-amplitude with some corrugations
to a sharply peaked profile near the last closed flux-surface. This peak is surrounded by regions

of stabilising shear causing a transport barrier, with a noticeable effect on the pressure profile.
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Figure 2: Radial profiles of the coefficients K, (left) and L., (right) before and after the formation of the

barrier. The profiles are averaged over several hundred interchange times.

Looking at the profiles of ., and K., below and above the transition threshold (Fig.2), one
can see that the two change drastically: the K., profile steepens at the position of the barrier
(much like the pressure profile), and a maximum appears on the profile of ., at the position
of the barrier. The radial variations of K., are responsible for the generation of a strong E x B
velocity shear, while the flow is effectively forced to the neoclassical value at the position of the
Uneo peak [7].

It is interesting to note that the barrier is not always quiescent, but can exhibit a complex
dynamics. In particular, close to the transition threshold, the barrier relaxes quasi-periodically.

This was already suggested using a simplified 1D model [8, 7], and is now confirmed by the 3D
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Figure 3: Relaxations of the barrier, for Qyp = 19. The top panel shows the time evolution of the energy confine-

ment time 7z = 1/Qy [, pdx, the bottom row shows the convective flux at the position of the barrier.

simulations. The relaxation oscillations of the barrier exhibit similarities with type-II1 ELMs:
they appear close above the power threshold, with a frequency decreasing with power up to the
point of vanishing completely. They are governed by resistive modes, as are type-I1II ELMs [9].
Such relaxations have already been observed in 3D simulations with imposed shear flows, and
a mechanism was proposed [10].

In conclusion, we report results of 3D simulations of edge turbulence showing self-generation
of a transport barrier above a threshold of input power. The barrier obtained thus exhibits several
features of the H-mode ETB, notably relaxations oscillations with similarities to type-1II ELMs.
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