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Achieving a large energy confinement is critical to the viability of magnetic fusion. This

represents a great challenge as the plasma of magnetic machines is largely unstable, notably

due to the presence of large gradients, resulting in widespread turbulence and fast energy losses.

Experiments however show that under certain circumstances, the plasma self-organises into a

state characterised by large, localised E×B shear flows that quench turbulence, creating a

transport barrier. Such transport barriers provide an important gain in confinement, therefore

H-mode, characterised by an external transport barrier (ETB) near the edge of the plasma, is

used by the reference scenario for ITER and ulterior machines. Theoretical understanding of

the transition to H-mode remains however unresolved [1], putting large uncertainties on the

value of the L-H transition power threshold [2]. H-mode is furthermore often accompanied by

relaxation oscillations of the ETB called edge-localised modes (ELMs), which put significant

stresses on the plasma facing components if not mitigated, making full understanding of the

phenomenon all the more desirable.

In this work, we use flux-driven 3D simulations of edge turbulence to search for the mecha-

nism responsible for generating the mean flow causing the ETB. The extended reduced MHD

model used in the EMEDGE3D code to describe resistive ballooning (RBM) turbulence is the

following [3]:
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This model is electrostatic and simulates turbulence in the edge, up to the last closed flux-

surface (LCFS). The scrape-off layer physics is not included. Equations (1,2) are respectively

the charge balance and energy balance, with the two fields φ and p being the electric potential

and the total pressure. ∇‖ and ∇⊥ are respectively the parallel and perpendicular gradients with

respect to the magnetic field lines. It follows that ∇2
⊥φ is the vorticity of the E×B flow. G

is a toroidal curvature operator, and Poisson brackets {φ , ·} account for the advection by the

electric drift velocity. In Eq.1, ν⊥ accounts for the classical viscosity, while in Eq.2, χ⊥ and χ‖

are respectively the perpendicular and parallel collisional heat diffusivities. The Fneo accounts

for collisional relaxation of the flow towards the neoclassical value due to friction between
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trapped and passing particles, and will be detailed below.

The system (1,2) is normalised as follows: time is normalised to the interchange time τint =√
R0Lp√
2cS0

with cS0 =
√

p0
n0mi

the typical acoustic speed and Lp the typical pressure gradient length.

The perpendicular length scale is the resistive ballooning length ξbal =
√

ρη‖
τint

Ls
B0

, with the mag-

netic shear length Ls being the parallel length scale. The fields φ and p are normalised respec-

tively to B0ξ 2
bal

τint
and ξbal p0

Lp
.

One can start the reasoning leading to the friction term Fneo from the radial force balance

equation for ions. Here, in the framework of our model, we have to make several assumptions:

first, we consider the density as constant n = n0, and second we assume a constant ratio between

the ion and electron temperatures Ti = εT Te. Furthermore, we consider that toroidal rotation is

small (generally true in the absence of torque injection). The radial force balance is then written

thus:

∂xφ̄ +
εT

εT +1
τint p0

ξbalLpen0B0
∂x p̄ = ūy (3)

Where φ̄ = φ − φ̃ and p̄ = p− p̃ indicate flux-surface averaged quantities, with φ̃ and p̃ the

associated perturbations.

The neoclassical poloidal velocity is given by: ūneo
y = εT

εT+1
τint p0

ξbalLpen0B0
K (νi,∗)∂x p̄ [4, 5], with

K (νi,∗) comprised between −2.1 in the Pfirsch-Schlüter regime and 1.17 in the banana regime

(in the limit of large aspect ratio), and varying sharply with collisionality between the two.

Eq.3 couples the pressure gradient and the E×B velocity ∂xφ̄ . This coupling is then intro-

duced in Eq.1 through a heuristic closure, taking the form of a friction term [6, 7]:

Fneo =−µneo (p̄)
[
∂xφ̄ −Kneo (p̄)∂x p̄

]
(4)

Through the coupling of the E×B velocity and the pressure gradient in Fneo, a feedback loop

can occur that would lead to strong flows and turbulence stabilisation: local stabilisation of

turbulence would cause a steepening of the pressure gradient, resulting in a strengthening of the

E×B shear flow, stabilising turbulence and further steepening the pressure gradient, with again

an effect on the flow. The coefficients µneo and Kneo influence greatly the shape of the E×B

velocity profile and control whether the feedback loop can produce a self-generated transport

barrier or not. Both coefficients µneo and Kneo depend on the collisionality, i.e. in our model

on the flux-surface averaged pressure p̄, at each radial position and each time-step. Taking into

account those spatial and temporal variations is found to be a key element in our simulations,

allowing for the spontaneous formation of a transport barrier above a certain threshold of input

power (illustrated in Figure 1 and further discussed in [7]). Similar simulations using constant
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Figure 1: Pressure (left) and E×B velocity (right) radial profiles for different values of input power. These

profiles show the generation of a transport barrier above a threshold in Q0. The profiles are averaged over several

hundred interchange times.

µneo and Kneo have not showed the generation of a transport barrier, despite a noticeable impact

of the friction term on the flow dynamics. As can be seen in Fig.1, when crossing the threshold

of input power, the E×B velocity profile changes from low-amplitude with some corrugations

to a sharply peaked profile near the last closed flux-surface. This peak is surrounded by regions

of stabilising shear causing a transport barrier, with a noticeable effect on the pressure profile.
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Figure 2: Radial profiles of the coefficients Kneo (left) and µneo (right) before and after the formation of the

barrier. The profiles are averaged over several hundred interchange times.

Looking at the profiles of µneo and Kneo below and above the transition threshold (Fig.2), one

can see that the two change drastically: the Kneo profile steepens at the position of the barrier

(much like the pressure profile), and a maximum appears on the profile of µneo at the position

of the barrier. The radial variations of Kneo are responsible for the generation of a strong E×B

velocity shear, while the flow is effectively forced to the neoclassical value at the position of the

µneo peak [7].

It is interesting to note that the barrier is not always quiescent, but can exhibit a complex

dynamics. In particular, close to the transition threshold, the barrier relaxes quasi-periodically.

This was already suggested using a simplified 1D model [8, 7], and is now confirmed by the 3D
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Figure 3: Relaxations of the barrier, for Q0 = 19. The top panel shows the time evolution of the energy confine-

ment time τE = 1/Q0
∫

x p̄dx, the bottom row shows the convective flux at the position of the barrier.

simulations. The relaxation oscillations of the barrier exhibit similarities with type-III ELMs:

they appear close above the power threshold, with a frequency decreasing with power up to the

point of vanishing completely. They are governed by resistive modes, as are type-III ELMs [9].

Such relaxations have already been observed in 3D simulations with imposed shear flows, and

a mechanism was proposed [10].

In conclusion, we report results of 3D simulations of edge turbulence showing self-generation

of a transport barrier above a threshold of input power. The barrier obtained thus exhibits several

features of the H-mode ETB, notably relaxations oscillations with similarities to type-III ELMs.
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