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Introduction

Intense beams of highly energetic runaway electrons are often generated during tokamak dis-

ruptions when the toroidal electric field exceeds a density dependent critical field (Ec). Reaching

energies of tens of MeVs, they may damage the first wall and therefore pose a serious threat

for reactor-type experiments. In ITER, disruptions are expected to generate runaway electrons

[1], mainly via knock-on collisions where enough momentum can be transferred from the rel-

ativistic to the slow electrons to transport the latter beyond a critical momentum pc, setting

off an avalanche of runaway electrons. The formation of runaway electrons is studied with the

3D Fokker Planck (FP) code LUKE [2], a well established code for calculating the electron

distribution function. It reproduces the primary (Dreicer) growth rate of existing theory well

[3], including the effect of effective ion charge. In order to describe the full generation of the

runaway electron population, knock on collisions have been implemented in LUKE.

Runaway avalanche due to knock-on collisions

The description of runaway avalanches is beyond the FP approximation, which is only valid

for weak deflections. Instead, the knock-on mechanism is described via a source term [4]:
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where p is the momentum normalized to mc and ξ ∗ is the cosine of the pitch angle of the

knocked-out electron. In (1), ne is the bulk electron density, nr is the runaway electron density,

τ is the collision time for relativistic electrons, and lnΛ is the Coulomb logarithm. An analytic

estimate of the avalanche growth rate is obtained by integrating the avalanche operator over

the runaway region p > pc in momentum space. This approach may overestimate the actual

avalanche rate, since it neglects the time it takes for an electron entering the runaway region to

gain sufficient energy for contributing to secondary generation. The growth rate normalized to

bulk density (ne) is:
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The runaway generation through knock on collisions in LUKE is benchmarked against the

growth rate in Eq. 2 in the case of cylindrical geometry (Fig. 1(a)). The Rosenbluth model
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Figure 1: (a) Avalanche mechanism implemented and benchmarked in LUKE. (b) Runaway

electron population grows exponentially when avalanche dominates. (c) Graphical representa-

tion of the combined Dreicer and avalanche growth rate.

(1) assumes that existing runaway electrons have an infinite momentum, but in practice a limit

pmax > pc must be defined such that the growth rate is evaluated as the flux of electrons through

pmax. We set pmax = max(pc;2
√

2) to account for primary runaway electrons above 1 MeV

With v/c ≥ 0.94, this criterion satisfies the assumptions in Ref. [4] and it is justified by the

weak dependence upon the incident electron energy in the energy range 1-100 MeV [5].

To ensure a conservative form of the knock on mechanism, a sink term taking out the elec-

trons transported from bulk to runaway momentum region is added along with the source term.

The particle conserving knock on operator has the form S = S+− < S+ > fM
< fM> , where fM is

the bulk distribution, assumed to be maxwellian and < ... >=
∫
...d3 p. The growth rate con-

sists of contributions from the two mechanisms Dreicer (D) and avalanche (A). The avalanche

growth rate is proportional to the RE density (nr) and can be quantified through an avalanche

multiplication factor γ̄A = γA/nr, so that 1
(1−nr)

∂nr
∂ t = γD + nrγ̄A, where nr is normalised to the

total electron density. Thus, the avalanche multiplication factor can be evaluated numerically

from the slope of the curve in Fig. 1(c).

Influence of toroidicity

Since knock-on accelerated electrons emerge with high perpendicular momentum [4], it is

necessary to properly account for guiding-center dynamics in non-uniform magnetic field ge-

ometry. The bounce averaged knock on operator derived and implemented in the LUKE code

takes the form:
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Figure 2: Radial dependence of Dreicer growth rate, normalized to the growth rate for cylindrical case

(ε = 0) , compared to a fit (1−1.2
√

2ε/(1+ ε)) (left) and multiplication factor for avalanches compared

to analytic expression (right) (E/Ec = 5).

Conservation of momentum shows that a significant part of the knocked-on electrons can be

magnetically trapped when born off the magnetic axis. Indeed, both Dreicer and avalanche

runaway electron generation are strongly affected by a non uniform magnetic configuration,

when the presence of magnetic trapping is accounted for (Fig. 2).

As an analytic estimate, we assume that all electrons with momentum p > pc will run away,

except the electrons in the trapped region p < pT . The latter criterion is obtained from the usual

condition on magnetically trapped electrons ξ0(ψ) ≤ ξ0T =
√

1−1/Ψmax, where ξ0T (ψ) is

the pitch angle, defined at the minimum B0(ψ) on a given flux surface, such that the parallel

velocity of the particle vanishes at the maximum Bmax(ψ). An electron will run away if its

momentum exceeds both the critical momentum and the trapping condition. Thus the lower

integration limit pmin is given by max(pc, pT ). From this condition an analytic expression of the

growth rate including magnetic trapping is derived and compared to FP simulations in Fig. 2(b).

For Ē � 1, the growth rate is reduced by a factor 2
π
√

εĒ
(1− ε)3/2. The overall runaway rate is

further reduced by the effect of magnetic trapping on Dreicer generation.

Importance of avalanche effect

We quantify the importance of avalanche generation as a function of plasma temperature and

electric field strength by letting a small fraction of the electrons run away in LUKE, and then

evaluate the part that originate from knock on collisions. Fig. 3 shows the fraction of runaway

electrons born due to knock on collisions, when 1% of the initial electron population has run

away. The importance of secondary generation increases for lower temperature and electric

field, as the slower primary generation rate allows for the avalanche mechanism to take off.

Data from a typical DIII-D disruption [6], with the central electric field reconstructed with the
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Figure 3: (a) The significance of the avalanche effect (nA/nr) (b) related to the electric field strength and

plasma temperature in a DIII-D disruption. The start of the thermal quench is marked with a diamond.

GO code [7], related to the simulations suggests that knock on collisions play a role in typical

disruptive scenarios. These results indicate that that in scenarios with large temperature drops,

avalanche generation may be a crucial ingredient in modelling of tokamak plasma disruptions.

Conclusion

A bounce-averaged knock-on collision operator from the Rosenbluth model is implemented

in the kinetic equation solved by the Fokker-Planck code LUKE, which now describes the run-

away electron generation through the combined effect of Dreicer and avalanche mechanisms.

The growth rate is benchmarked in the cylindrical limit. An analytical expression for avalanche

growth rate accounting for magnetic trapping due to a non uniform magnetic configuration has

been derived. It is in good agreement with numerical results and shows that a significant pro-

portion of secondary electrons could be knocked into the trapped region. In addition, LUKE

simulations reveal that knock-on generation dominates Dreicer generation at lower values of

the temperature and electric field, and likely play a significant role in tokamak disruptions.
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