41%* EPS Conference on Plasma Physics 02.304

3D3V plasma Kkinetics code DiamondPIC for modeling of substantially
multiscale processes on heterogenous computers

A.Yu. Perepelkina, V.D. Levchenko, I.A. Goryachev

Keldysh Institute of Applied Mathematics, Moscow, Russia

Modern problems in plasma physics put many requirements on particle-in-cell (PIC) codes. It
is often preferable to conduct numerical experiments with full 3D3V geometry, self-consistent
fields, fine mesh, high order of accuracy, and be able to simulate large systems. These require-
ments strain the limits of computer capabilities. General purpose graphical processing units
(GPGPU) with CUDA technology offer new computing power, and it is crucial to use it with
maximum efficiency.

A new PIC code DiamondPIC is now in development. We discuss the features of the code

and show its advantages over existing software.

Model

A 3D3V self-consistent Vlasov-Maxwell system of equations is the mathematical model for
the code. For Maxwell equations FDTD method of 2nd, 4th and higher order is used. Yee cell
with electric field components on cell faces and magnetic field components on cell edges is
used here. Particle-in cell method is used to solve Vlasov equation. To account for high order

schemes we consider form-factors of the following form.
Aé(x _x/) _ /AZI (x _x//)AO(x/ —x”)dx”,

With ¢ = 0 A(x) is a rectangle function and its support covers exactly one cell. Here ¢ corre-
sponds to the order of scheme approximation. Form-factors with ¢ not less than 2 will be used,
so that the order of approximation of the whole calculation would not be less than 2. In this
paper, ¢ = 2 is assumed.

Based on a given problem, the limitations on time step for field evolution dt ;4 and for particle
movement dtp;c may differ. The ratio dtp;c/ dtfq of about ~ 1+-20 will be considered. In the
terms of the algorithm it means that one particle push and current deposition step takes place

after 1 =20 field evolution steps.
DiamondTorre algorithm for FDTD method
Since FDTD method has cross shaped stencil DiamondTorre 2D algorithm may be used. In

outline, the algorithm with its CUDA-based implementation can be described as follows. We

consider a mesh of Nx x Ny x Nz size. The field data on mesh is contained in 2D array of size

41%* EPS Conference on Plasma Physics 02.304

Nx x Ny in which 9 (3 components of electric and magnetic fields and current densities) 1D
arrays with length Nz are stored. 2D DiamondTile at a given (x,y) coordinate is defined as the
set of field values which fall into the diamond shape on the mesh on two (E and B) time layers
(fig. 1). The upper layer is shifted by half the stencil size (half the cell for 2nd order FDTD;
1.5 cell for 4th oder) to the positive direction of x axis (see fig. 1). Whole arrays of fields in z

direction corresponding to the specific (ix,1y) index are assigned to each tile.

Algorithm is processed in Nx stages. At vy ”ﬂ&ll y >|<_||
B E
each odd stage (I = 1,3,5,...) Ny/2 tiles with XE " X— " >_<B)Z(E§
(Nx-Liy) for even iy (iy = 0,2,..,Ny —2) * v]° ¥ LH@][_I | By []2
indexes are computed asynchronously, with IX X

each tile assigned to separate CUDA block.
Figure 1: One DiamondTile for 2nd (left) and 4th

For diamond tiles at Nx-1 some part happens
(right) order FDTD

to fall outside the domain; these values are not

computed. In each tile calculations are distributed between CUDA threads based on z coordi-
nate. To compute finite differences in z direction, the values are saved to shared memory, CUDA
threads are synchronized, and then the differences of values saved to shared memory are calcu-
lated. In each tile electric field values are computed after magnetic fields.

At each even stage diamond tiles with (Nx-I,iy) for odd iy values are calculated in the same
way. After all stages are done the whole simulation domain data progresses by 1 time step.

If one chooses dtp;c/ dtrig > 1, the tiles are stacked onto each other to form tilted towers
(called "Torre’ in Italy, hence the name of the algorithm). This way, at each stage, each CUDA
block processes consequently Nt = dtpc/dtgq tiles at coordinates (ix + (NO — 1)it,iy) for ix
corresponding to the current stage, with odd or even iy, NO equal to scheme order, it =0..Nt — 1.

It should be noted that the until the whole simulation domain is covered the field data at
different cells correspond to different time instants, from O to Nt. Nevertheless the algorithm
provides correct dependencies and DiamondTorres at each stage are asynchronous so they may
be processed concurrently by CUDA blocks without superfluous synchronizations .

The method is advantageous since it provides vectorized access to mesh data and mitigates
the misbalance of memory bandwidth to calculation efficiency.

At present state the achieved calculation rate of FDTD calculation is ~ 1.6-10° cells per

second for 4th order and 5 - 10° for 2nd order on one nVidia GeForce GTX TITAN.

Paritcle-in-cell implementation specifics
The common issues to address here is to organize particle data structures so that data locality

is preserved both in field to particle interpolation step, and in current deposition step. Particles

41%* EPS Conference on Plasma Physics 02.304

move freely in the mesh, this requirement also assumes that resorting of particles takes place.

The proposed algorithm works as follows. Particles are organized in cubes of Nc x Nc¢ X
Nc size. For a particle push step, each cube is executed by one CUDA-block, and particle
calculations are distributed between threads. To accelerate particles located inside the cube,
2-3.(Nc+2)? field values are needed. Assuming particles may cross m boundaries in one
direction away from the original position, particle affect 3(Nc 42+ 2m)?(Nc+ 1 +2m) current
density values on mesh in the worst case.

To accelerate particles in the cube, it appears efficient to get field values through read-only
GPGPU cache, since these are not modified during particle push step.

To update current densities, it is proposed to allocate an array in shared memory in each
CUDA-block. Initially, the array is filled with zeroes. Using atomic operations to avoid race
conditions, particles add some values to the array elements during their movement. Current
deposition is an additive operation, so the resulting array is projected by summation on the
original array of cells.

For both these considerations, Nc = 8 is most appropriate. Required fields occupy ~24KB,
which is equal to read-only cache size on modern compute capabilities. Current density array
occupies ~ 19KB, 30KB, and 46KB for m = 1,2 and 3 correspondingly, which fits into the
available shared memory capacity. Both field and particle data amounts to ~ 100 Bytes per
particle if the amount of particles in cell is Np;c = 1, and ~ 8 Bytes per particle for Np;c = 10.
If no such clustering is used for field arrays, total required data save/load amount per particle
would be ~ 1KB, so the benefit of this approach is evident.

Let us now discuss how particle sorting takes place. Particle data management is organized
alike virtual memory of operating systems. Particle data is stored in a ’page’, pages are orga-
nized in an array. A control structure as a table of page indexes provides methods to get particle
with specific index; to write a particle to a page; and to free a page.

Each cube has a table to look up particles from the cube in an array. It also contains a ’reser-
voir’ table of indexes. A separate structure exists for the table of free pages in the array. When
particles are moved, they are saved to the reservoir of the cube, in which they end their move-
ment on the current step. After the cube is processed, its main table of indexes is cleared com-
pletely and pages are freed. When the cube with all its neighbors is processed, its reservoir is
copied to main table, then cleared. So particles remain sorted throughout the simulation and no
separate sorting step is needed.

Alike 27-color scheme, for 3D case the particle push is completed in 27 consequent calls of

CUDA kernel with Nx/(3Nc¢) x Ny/(3Nc) x Nz/(3Nc¢) asynchronous CUDA blocks to avoid

41%* EPS Conference on Plasma Physics 02.304

conflicts between thread writes.
By current estimates and tests in one second ~ 10 particles may be processed on one nVidia

GeForce GTX TITAN.

Particle-in-cell with DiamondTorre

With DiamondTorre algorithm, the usual state is that some part of simulation domain has
processed Nt steps and is ready for particle push step, while the part of the domain remains on
the initial step. The further step may be added on top of DiamondTorre (fig. 2), so the particle
push and current update operations are processed where possible. In the area where the current
update is ready, DiamondTorre for FDTD can be further built.

Let us limit the height of DiamondTorre is limited by some number. Each stage of the algo-
rithm then generally does not need the data from whole simulation domain. Only this amount
of data is needed to be stored on GPU for this case.

This way even full 3D3V simulations may be processed without large amount of GPU.

At
T PIC st
. oteP —s, calculated
Conclusion not \\ to time
calculated layer T
The code is aimed to utilize GPGPU capa- yet ~< NtFLD
cye- . . . 0 : i
bilities with maximal efficiency. The advan- in progress N
0 Nx

tages of the presented code are the following. Figure 2: DiamondTorre. Only data for E
FDTD simulation is vectorized by data and progress’ calculation is located in GPU memory.
already achieve up to 5 - 10” cells per second calculation rate.
The particles remain localized throughout simulation so that no separate sorting step is needed.

The maximal size of the simulation domain is not limited by available GPU memory capacity.

Aknowledgements

The work is supported by RFBR grants 12-01-00708, 14-01-31483.

References
[1] A. Yu. Perepelkina, V. D. Levchenko and I. A. Goryachev, Journal of Physics: Conference
Series 510, 1, 012042, (2014)
[2] M. Bussman et al, Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC *13, 5:1-5:12, (2013)
[3] X. Kong, M. C. Huang, C. Ren and V. K. Decyk, Journal of Computational Physics, 230,
4, 1676-1685 (2011)

