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Abstract. This paper presents the analysis of disruptions in ITER including 3D volumetric
blanket modules. The plasma evolution is computed as a sequence of axisymmetric
equilibria, self-consistently coupled to a volumetric 3D description of surrounding
conducting structures. The consequences on plasma evolution of different assumptions on

the structures are analysed.

1. Introduction

Future magnetic confinement fusion devices, like ITER, have such high performances to
require a special care in the dimensioning of various components, posing several challenges
both from the physical and from the engineering point of view. Disruptions are a particular
concern for ITER [1]: the sudden loss of magnetic confinement, with subsequent release of
the magnetic and thermal energy stored in the plasma to surrounding structures, can produce
electromagnetic forces and heat loads that require challenging design provisions in several
components. In order to extrapolate the available experimental data to ITER, reliable and
comprehensive computational tools are needed. Several modelling approaches are available
for the analysis of disruptions, but none of them can be applied to all cases of interest, due to
specific limitations and ranges of validity. For instance, [2] provides a valuable comparison
of two well known axisymmetric codes for the analysis of disruption, DINA and TSC,
highlighting the effects of different assumptions and limitations.

In this paper, we apply CarMaONL [3] to ITER, in order to evaluate the effect of volumetric
3D blanket modules on plasma evolution during a disruption. Indeed, CarMaONL has the
unique capability of self-consistently coupling a nonlinear plasma evolution through
equilibrium states (which, on the time scale of interest, well approximate the plasma
dynamics) to a volumetric 3D description of surrounding conductors (which is required to

accurately estimate the plasma evolution and the related electromagnetic loads).
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2. Numerical model

The CarMaONL code [3] decouples the electromagnetic interaction between the plasma and
the conductors via a suitable surface. In this way, a different formulation can be used for the
plasma and the conductors, adopting for each region the most effective approach. The
problem consists of equilibrium equations in the region accessible to the plasma, eddy
currents equations in the external region (hosting 3D conductors) and suitable coupling
conditions on the coupling surface in between. In doing so, we have postulated that the
plasma evolves through equilibrium states (quasi-static evolution). This assumption is valid
if the plasma mass can be neglected, so that effects due to plasma inertia are not important.
This is true whenever the time scale of the phenomenon under study is much slower than the
Alfvén time scale, which is certainly reasonable in the case of disruptions [2].

Fig. 1 shows the 2D triangular mesh used to solve Grad-Shafranov equilibrium equation in
the plasma region and the most comprehensive 3D volumetric mesh of the conductors used in
the present paper. Other 3D meshes have been produced: axisymmetric (for comparison and

validation) and 3D without the blankets (to evaluate the effect of blankets).

3. Results

We analysed one typical ITER disruption: the so called MD-UP [4] event, consisting in a
major disruption (1 ms thermal quench, followed by a linear current quench lasting less than
40 ms), causing an upward VDE (Vertical Displacement Event). The plasma current density

profile evolution is imposed; no halo currents are considered.
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Fig. 1. 2D mesh of the plasma region and detailed volumetric 3D mesh of conductors.
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The first tests are carried out with a 3D mesh mimicking an axisymmetric structure with no
blankets, to compare the results with available axisymmetric evolutionary equilibrium codes,
both linearized (CREATE-L [5]) and nonlinear (PROTEUS [6]). The results reported in Fig.
2 are produced using exactly the same mesh in all the codes for the plasma region; they show
a good agreement at initial instant, but highlight a significant nonlinear effect on the vertical
position variation. This effect is exacerbated by the presence of a significant cancellation, so
that appreciable differences in the vertical position may arise even in presence of small
differences in the currents induced in the vessel.

The introduction of volumetric blanket modules significantly affects the initial jump in
vertical position due to the thermal quench (Fig. 3). The reason is highlighted in Fig. 4, which
shows a plasma configuration during the disruption and some current density patterns inside
the structures. Evidently, the blanket modules give a significant net contribution due to
specific current loops arising in their structure. Axisymmetric models like TSC and DINA
can account this effect only approximately, with different possible approaches [2]. It should
be noted that, contrary to CarMaONL results, DINA simulations includes halo currents,

which start to rise at around 27 ms and completely replace the plasma core at around 45 ms.

4. Conclusions

We have analysed one ITER disruptive event (MD-UP) with the CarMaONL code, including
volumetric blanket modules. The results confirm the importance of a correct modelling of
such conductors for an electromagnetically self-consistent plasma evolution during the
event. Currently, the CarMaONL code is being complemented with halo currents, in order to
allow a more realistic description of the disruptive event. This work was supported in part by

Italian MIUR under PRIN grant#2010SPS9B3.
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Fig. 2. Comparison with axisymmetric codes: currents in the structures and time behaviour of

magnetic axis vertical position
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Fig. 3. Time behaviour of plasma centroid position during MD-UP disruptive event

Fig. 4. Plasma config. and current density patterns inside the structures at various instants



