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1) Abstract 
We use a parameter βr for all plasmas that allows detecting the pollution of the plasma bulk 
by highly radiative impurities. This parameter is defined as the radiative loss of the mixture of 
impurities relative to their mean Z2 and was used in the past to characterize the efficiency of 
radiative mantles in Neon seeded discharges [1,2]. We show that this parameter, though 
global, is very sensitive to the presence of highly radiative impurities in the bulk of the 
discharge. In the carbon environment of JET, the value of  βr  is around  10-40 MW.m6, 
indicating the absence of highly radiative impurities in the plasma. In the ILW machine, the 
value of βr is found to depend on the type of additional heating and confinement state of the 
plasma. We observe that neutral-beam injection (NBI) introduces little W into the plasma, 
with a βr between 2 and 3 10-40 MW.m6. Ion-cyclotron radio-frequency (ICRF) waves yield a 

βr of order 5 in L-mode and  10-39 MW.m6 in H-mode when no edge-localized modes (ELMs) 
are present. 
 
2) The definition of βr. 
Following  references [1,2]  a parameter characterizing the quality of cooling of the impurities  
in the bulk of the plasma can be written as: 

 βr=Pradbulk/(Zeff-1) ne
2          (1)           

where ne is the line-averaged density provided by high-resolution Thomson scattering and Zeff 
is calculated from bremsstrahlung emission measured along a horizontal line-of-sight crossing 
the plasma centre  (i.e. not passing through the divertor region). Prad in the bulk is evaluated 
by bolometry. In JET, we neglect the bremsstrahlung and cyclotron radiation; however, in a 
machine such as ITER, they will have to be calculated or measured and removed from the 
total radiated power before evaluating βr.  We give the expression for βr in a general case with 
different types of impurities in a deuterium plasma. First the bulk radiated power can be 
written as:  
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In this expression nimp is the total impurity density, ne the electron density, ai=ni/nimp the 
fraction of impurity ions with charge Zi, bi=nei/ne, the fraction of the density in the volume 
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where the ion with charge Zi radiates and ci=Vi/V the fraction of the volume in which the same 
ion radiates. Lti is the radiative cooling function for the same ion with charge Zi. We suppose 
in this expression that the electron temperature Te is homogenous in the volume where the ion 
of charge Zi is radiating, as well as the density of impurity ions and electrons. Here k denotes 
different types of impurities.  We can write the expression for Zeff as: 
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If we combine these expressions in relation (1), we find 

∑ ∑

∑ ∑

−ε

ε
=β

k i

k
i

k
i

k
i

k
k i

k
it

k
i

k
i

k
i

k

ZZa

Lcba

V )1(imp

imp
r    (2)     where 

∑
=ε

k

k

k
k

n

n

imp

imp
imp . 

 We notice that  βr/V has the dimension of Lt and can be expressed in W.m3. 

3) The physical meaning of βr 

The radiative loss parameter of an impurity k is defined in reference [3]  
 as Sk= )/(r̂ad kek nnP , where radP̂  is radiated power density (W/m3). It can be calculated using 

the same notations used in section 2. 
We find in this case that for an impurity k,  Sk ≈ it
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different ionization states. Hence βr can be expressed as a function of the radiative loss 
parameter  Sk of the impurities as: 
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For W, the radiative loss parameter increases moderately for Te above 100 eV (about a factor 
of 2 between 100 eV and 3 keV), while it decreases by a factor of 10 for carbon in the same 
range. In the case of W pollution, the rather weak dependence of SW with Te leads to the 

conclusion that an increase of βr must be associated with an increase of the relative 

concentration of W in the bulk Wimpε  (even if this increase is not sufficient to have a 

measurable impact on Zeff). The second point is that the value of βr is liable to be very 

resilient to Te changes with tungsten pollution. Finally, in the ILW changes in the values of βr 
will always indicate a change in the bulk impurity mixture. 

4)  Carbon environment  in  H-mode. 

In Figure 1, βr is plotted for an H-mode shot  with ELMs.  Two heating phases are present, the 
first with 9 MW of NBI power, the second with 19 MW of NBI power. Figure 1 shows that 

the 9 MW phase has a value of βr close to  10-40 MW.m6 ,value usually obtained in L-mode. 

At 19 MW, βr decreases to 0.5 10-40 MW.m6. This decrease may be attributed to the behaviour 
of the radiative loss parameter of the light impurities and carbon (SC) in particular. As the 
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used triggers an L
drops at 
the transition, 
commonly observed in the JET database when ICRF triggers H
one of the highest values obtained so far for 
immediately after the ICRF power has reached the threshold, it can be speculated that this is 
partly the effect of the transport change. As transport decreases in the bulk after the H 
transition, the amount of impurities there increases. 

7) Conclusion
We have shown that a global time
the presence of highly radiative impurities in tokamak discharges. It can be calculated for all 
plasmas regardless of the scenario and of the confinement state. We hav
in the carbon environment with ones in the ILW. The very low values obtained in the carbon 
environment clearly indicate the absence of significant radiation from highly radiative 
impurities in the bulk plasma, 

the ILW environment, we observe that plasmas heated with NBI have relatively low 
of order 2 to 3 times those measured in the carbon environment. During the L

βr parameter is observed to increase 

power. In the case of ICRF heating, the plasmas systematically yield  
5 10-40 in L
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