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Introduction

It has been decided that ITER will be operated from day one with W divertor and Be first wall.
In such a wall configuration, one of the most significant issues is impact of W accumulation on
plasma fusion performance. In order to investigate the impact, in JET, experiments with ITER-
like wall configuration have been performed with an upgraded high-resolution X-ray crystal
spectrometer. This X-ray spectrometer originally monitored Ni concentration [1], and has now
also started monitoring W concentration since a second crystal and detector were installed [2—4].
Coincidentally, Mo spectral lines are found in the same wavelength range as the W spectral
lines. Hence, from the measured absolute intensities of W and Mo spectral lines, it is possible
to evaluate the W and Mo concentrations simultaneously. The present report provides the first
output of W and Mo concentrations from the upgraded spectrometer.

Spectrometer setup

The present X-ray spectrometer is built in Johann mounting with a Rowland circle radius
of 12.5 m and a new Gas Electron Multiplier (GEM) detectors [2—6]. The measurable spec-
tral band for the W channel is 0.0043 nm with 256 strips of the detector at a wavelength of
0.52 nm, or a photon energy of ~ 2.4 keV, and an inverse linear dispersion of 2.1 x 107>
nm/mm. The sensitivity is calculated as a product of photon-throughputs at each component
of the spectrometer: X-ray reflectivity of the crystal, transmittance of a 150 um Be window
at the torus, a 9 cm He gas buffer in front of the detector, a 12 um Mylar window at the de-
tector, resulting in 5.4 x 10~!'! [counts ph~'m?2sr] for the first order diffraction spectrum and
7.2 x 10712 [counts ph_lmzsr] for the second one [4]. The diagnostic line-of-sight is on the
mid-plane of JET, 0.2 m below the magnetic axis of typical diverted plasmas.
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Line identification

One of the difficulties in high resolution spec-
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idation of the modelled spectrum using Flexible
Atomic Code (hereafter, FAC) [7], by comparing
it with published spectra [8]. Mo laser-blow-off

Figure 1: Comparison of the spectrum measured
by the upgraded X-ray spectrometer [4] with that

calculated by Flexible Atomic Code [7] for wHot
experiments confirm that the central two SpeCtral W+ and Mo3%" at an electron temperature 0f5

lines, shown in Fig. 1, are from Mo. Furthermore, keV and a density ratio of 1:1.8:0.4, respectively.

comparison with the calculated spectrum indicates that the two lines are due to Mo*>* (2s - 3p :
A=0.52069 nm [9] and 0.5217 nm [10]). The remaining lines are well reproduced by a validated
W spectrum, resulting in the following identification: W** (3p-4d : A = 0.52289 nm [9]), and
W46+ (3p-4d : A = 0.52004 nm [9]). Note that slight difference in the above wavelengths from
the positions of the spectral lines in Fig. 1 is due to Doppler shift.

W and Mo concentrations
From the measured intensities, core W and Mo concentrations, nw /n. and ny,/ne, respec-
tively, are determined from the following equation (a similar equation for Mo):

WG+

I
cw = hw /Ne = , (D
w=nw/ TPECY™ (R) ne(R)2 FAY" (R) dR

where TV [ph m~2s7!] is the measured W** intensity, PECV"" [ph m3s~!] the photon
emission coefficient calculated by FAC [7], FAW46+ the fractional abundance under coronal
ionization equilibrium calculated with ADAS ionization/recombination rates [11], R [m] the
major radius along the line-of-sight of the X-ray spectrometer. Below an electron temperature of
~5 keV, PECY""" (R) ne(R)? FAV" (R) is peaked at the very centre of the plasma, indicating that
the W concentration determined from eq. (1) is a good measure for the core W concentration,
although the line-of-sight of the X-ray spectrometer does not passes through the very centre but
up to a normalised poloidal flux of 0.05. The determined cw and ¢y, are shown in Fig. 2 (a). The
W and Mo concentrations are in the range of 10> and 1077, respectively, both in non-seeded
and in N, or Ne seeded ELMy H-mode plasmas with a plasma current of 2-2.5 MA, a toroidal
magnetic field of 2.7 T, a neutral beam heating power of 15-18 MW, an ion cyclotron resonance
heating power of 3.5 MW ( N;- seeded plasma only ), a central electron temperature and density
of 3—4keV and 6 —9 x 10! m~3, respectively. The ratio of Mo to W concentration is ~ 5%.
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Because the Mo concentration seems to be propor-
tional to the W concentration, it is suggested that
Mo sources are not special locations which plasmas
attach occasionally but should be usual plasma wet-
ted areas, similar to W sources. One of the possi-
ble sources is a Mo marker tile installed as an in-
ner vertical divertor target [12]. It will be confirmed
whether this tile can be a sufficient source for the
determined Mo concentration.

Figure 2 (b) shows comparison of the W con-
centration from the X-ray spectrometer with those
from a Vacuum Ultra Violet (VUV) spectrometer
[13] and a soft X-ray (SX) array measurement [14],
which are respectively determined mainly from the
intensity of W% (4s-4p : A = 6.2336 nm [9]) and
from the sum of the intensities of the modelled W
spectral lines in the wavelength range below ~ 0.5
nm, which can pass through a 250-um-Be filter. It
is known that in toroidally rotating plasmas, the W
emission tends to relocate to the low field side due
to centrifugal effects [14]. Thus the VUV spectrom-
eter, whose line-of-sight passes through the very
centre of the plasma, typically misses the signifi-
cant part of the W emission. For this reason, only W
concentrations in plasmas with low toroidal rotation
velocity are compared in this discussion. As shown
in Fig 2 (b), the W concentration from the VUV
spectrometer is in good agreement with that from
the X-ray spectrometer. In contrast, the W concen-
tration from the SX measurement is about a factor
of seven higher than that from the X-ray spectrom-
eter. The discrepancy is beyond the uncertainty of
the sensitivity in the X-ray spectrometer. The rea-
sons for this discrepancy are not yet understood and
will be investigated in future work.
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Figure 2: (a) Mo concentration and (b) W con-
centrations from a VUV spectrometer [13] and a
soft X-ray array measurement [14] as a function
of the W concentration from the X-ray spectrome-

ter.
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Figure 3: Z,4 evaluated from 0.522 nm and
0.261 nm continua measured by the X-ray spec-
trometer and that from a visible spectrometer [15]

in a N, seeded plasma, as a function of time.

As Figure 1 shows, continuum emission is clearly observed in the X-ray spectrum. We use

this additional spectral information to independently validate the sensitivity of the X-ray spec-

trometer. In order to determine the plasma effective charge, Z.¢, from the continuum intensity,

it is required that another continuum component such as continuum emission due to W ion re-

combination is sufficiently small. Detailed calculations, which consider not only recombination

to the ground levels of W ions but also to the excited levels, show that the recombination contin-
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uum intensity is 1% of the measured continuum intensity, therefore recombination continuum
is only a minor contributor. Z. can thus be determined from the measured continuum intensity
with a small correction for the recombination continuum contribution. Comparison of Z¢ from
the X-ray spectrometer and from a visible spectrometer [15] results in agreement within a factor
of three, on the assumption of spatially uniform Z. profile. This means that the sensitivity of
the X-ray spectrometer, and therefore the Mo and W concentrations, are valid within a factor of
three.

Conclusions

WH* and W4+ 3p-4d inner shell excitation lines in addition to Mo3?* 2p-3s lines were
identified at a wavelength of ~ 0.52 nm (X-ray range). From the absolute intensities of the
W40t and Mo32 lines, W and Mo concentrations were determined: respectively, ~ 1073 and
~ 1077 range. Comparison of the W concentration from the X-ray spectrometer with that from
the VUV spectrometer [13] in plasmas with low toroidal rotation velocity, in order to avoid
known underestimation [13] of the W concentration from the VUV spectrometer, showed good
agreement. In addition, comparison of Z. from the X-ray spectrometer with that from a visible
spectrometer [15] showed an agreement within about a factor of three. From these results, the
sensitivity of the X-ray spectrometer is validated at this level of uncertainty, and therefore,
the W and Mo concentrations from the X-ray spectrometer are valid within a factor of three.
However, the W concentration from the SX measurement [14] is about a factor of seven higher
than that from the X-ray spectrometer, and this discrepancy is larger than the uncertainty of
the sensitivity of the X-ray spectrometer ( about a factor of three). The discrepancy of the W
concentrations between the SX measurement and the X-ray spectrometer is not yet understood
and will be investigated in more detail in future work.
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