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1. Introduction  Zero-dimensional models[1-6], which are sets of coupled nonlinear 
differential equations that have time as the single independent parameter, can assist in 
interpreting fusion plasma phenomenology, both global and local. The model variables 
typically denote key macroscopic quantities such as, here, the temperature gradient, the 
micro-turbulence level, and the amplitudes of zonal flows and geodesic acoustic modes 
which are mesoscale structures. The model typically embodies Lotka-Volterra or 
predator-prey dynamics, which can be strongly nonlinear. Zero-dimensional models can 
generate configurations that are proxies for enhanced confinement states, together with 
transitions to and from them. Here we investigate the impact of oscillatory external 
heating rate in the framework of the zero-dimensional model of Zhu et al.[5], hereafter 
ZCD, which couples the four variables introduced above, and is driven by the heating 
power q(t). We find that when the external heating rate in the ZCD model includes a 
component that oscillates sinusoidally in time, a period-doubling bifurcation path to 
chaos exists. The amplitude A of the oscillatory component of heating rate is the control 
parameter. The micro-turbulence level E bifurcates with increasing A, and we find that 
Feigenbaum’s first constant[7]characterises successive bifurcations to high accuracy. 
 
2. Model description  The ZCD model variables are[5] drift wave microturbulence 
level E, temperature gradient N, zonal flow velocity VZF, geodesic acoustic mode velocity 
VGAM. The equations embody both linear effects and nonlinear couplings. The mesoscale 
structures VZF and VGAM are induced by the micro-turbulence level E. The growth of 
microturbulence E, driven by N, is suppressed by mesoscale structures VZF and VGAM, as 
well as being self-suppressed. External heating q(t)drives the system and the heating rate 
acts as a control parameter. Normalising time t to τ  as in [5], the ZCD model equations 
are [5] 
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Numerical solutions of this system have recently been studied[5] for parameter regimes 
maximally close to those investigated in the three-variable model of [1,2]. 
 
3. Consequences of oscillating heating  We represent the external heating rate by[8] 
 

( ) ( )0 sinq t q A tω= +  
 

where 0 0.47, 0.05q ω= =  and all other coefficients and initial conditions take the values 
that were used to generate in Fig.2 of [5]. The oscillatory timescale is fast compared to 
the duration of the quasi-stationary phases in Fig.2 of [5]. Specifically, the period of the 
oscillating heating rate is approximately half that of the limit cycle in Fig.2 of [5]. 

 
Figure 1. Period-1 oscillation in ZCD system with oscillating external heating rate with amplitude A = 
0.0215. Left panel: power spectrum of temperature gradient N. Right panel: the attractor in (N,U2 ,E) phase 
space, where U2 is normalised VGAM. Inset on left, a segment of the time series of N. Reproduced from [8]. 
 
Figures 1 to 5 show the initial period-doubling path from period-1, via period-2 and 
higher, to a chaotic attractor as the value of A is increased from 0.0215 to 0.0295. These 
values of A correspond to a few per cent of the steady heating rate q0 = 0.47. 
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Figure 2. As Fig.1, demonstrating period-2 oscillation in ZCD system with amplitude A = 0.0240. 
Reproduced from N[8].  

 
Figure 3. As Fig.1, showing chaotic attractor of the ZCD system with amplitude A = 0.0295. The time 
series of N has become erratic. Reproduced from [8]. 

 
Figure 4 Period-doubling demonstrated by over-plotted power spectra of N in the frequency range from0.04 
to 0.08. Periods 1, 2 and 4 are denoted by blue, red and black dash lines. Reproduced from [8]. 
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Figure 5 is a bifurcation diagram of the period-doubling path to chaos in the value of E as 
the parameter A increases from 0.0215 to 0.0295 in the ZCD model. We have obtained 
the values of An at which the nth period-doubling bifurcations occur, from period-1 to 
period-8, giving the first Feigenbaum’s constant 4.666 which is within 0.05% of the 
universal asymptotic value 4.669[7]. 

 
Figure 5.Period-doubling bifurcation path to chaos of ZCD system dynamics. Microturbulence level E is 
plotted versus amplitude A of oscillating heating, in the range 0.0215 to 0.0295. Arrows a to d mark 
successive bifurcation points, which occur at the values A = 0.0230, 0.0265, 0.0272 and 0.0273. The last 
arrow shows a period-6 window within the chaotic region. Reproduced from [8]. 
 
4. Conclusions  When a small oscillatory external heating component, whose amplitude 
A is a few per cent of the steady state heating value, is included in the ZCD model, a 
classic period-doubling bifurcation path to chaos is found in the micro-turbulence level E 
as A increases. This phenomenology has not previously been observed, so far as we are 
aware, as a response to oscillatory heating in other zero-dimensional models e.g.[6]. It 
may assist future experiments testing the assumptions of zero-dimensional models, and 
perhaps distinguish between them. 
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