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ABSTRACT 

We apply a procedure implemented in [1,2,3] to derive a new two-dimensional 

integrable symplectic map to describe the equilibrium magnetic field lines of plasmas in 

tokamaks with a single-null divertor. The invariant surfaces obtained by this map can 

reproduce a wide variety of magnetic surfaces with elongation (κ) and triangularity (δ) 

determined by the choice of free parameters, such as the hyperbolic point coordinates. The 

safety factor profile of the map can also be specified. These maps can be applied to 

simulate quite well plasma edge tokamak configurations with poloidal divertor in transport 

investigations. Resonant magnetic perturbations are introduced, replacing the map 

separatrix by a chaotic layer and allowing the study of open magnetic field line structure in 

the region between the plasma and the tokamak wall. The main aspects of transport, such as 

connection lengths and magnetic footprints on the divertor plate [1,2,3] are also presented. 

 

1 –  INTRODUCTION 

An integrable two-dimensional symplectic map is developed to obtain magnetic 

field lines in tokamaks with a divertor, following the methodology described in references 

[1,2,3]. The proposed model consists of twelve parabolic branches jointed smoothly and it 

aims to eliminate the limitation imposed in the model [3], which does not provide magnetic 

surfaces with triangularity. The model allows representing surfaces with large sets of values 

of triangularity and elongation. In this map we apply a resonant perturbation to study the 

chaotic magnetic field line transport near the separatrix. 

 

2 – THE METOD 

The trajectory integration method can be summarized in the following steps [1,2,3]: 

i –Choose an appropriate function V(x) in a Hamiltonian denoted by �: 

� =
��

�
+ �(�) (1) 

ii –Solve Hamilton´s equations: 
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iii – Discretize the continuous solutions by transformation: 
 

��(��, ��, �), �(��, ��, �)� → ��(��, ��, ∆), �(��, ��, ∆)�. (3) 

The parameter  is the discretization parameter and is related to the rotational transform of 

each invariant surface. In an equilibrium plasma this rotation is given by the safety factor. 

As topology of invariant surfaces independent of the Δ we can reproduce any safety factor 

associated magnetic surface we want to model through the appropriate choice of Δ(ψ) [3], 

which can be given by: 

∆(�) = 	
�(�)

�(�)
 (4) 

where �(�) is the rotational period of the invariant curve � and �(�)  is the safety factor 

of the magnetic surface that we want to represent by the invariant curve �. 

 

3 – EQUILIBRIUM MAGNETIC FIELD MODEL 

The invariant curves as a diverted plasma shape are obtained by using two-

dimensional potential (for x> 0 and x <0) in which each curve consists of six parabolic 

branches matching smoothly to preserve the integrability of Hamilton´s equations, as 

shown in Fig. 1. The positions of the local minima correspond to elliptic points and local 

maximum corresponds to the hyperbolic point (X point).  

The main geometric parameters of the separatrix are shown in Fig 2, which can vary 

freely. 

 

Fig 1. The potential V(y) for the proposed map. The curve plotted in red is the potential for x>0 and the curve 

plotted in blue is the potential for x<0. Six parabolic branches compose each curve. 
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Fig 2. Schematic view of geometric parameters. 

 

To illustrate the versatility of the model we show in Fig. 3 two configurations with 

different triangularity and elongation. A monotonic safety factor profile was used to 

reproduce these configurations. 

 

  (a)   (b) 
Fig 3. Invariant surfaces with parameters (a) xMAX = 2.5, x’MAX = -1.5, xMIN = 0.8, x’MIN = -0.6, yMAX = 5.0, 
yH2 = -2.75, yS = -4.0, yH1 = -5.0, y0= -6.0, yMIN= -7.0 and (b) xMAX = 1.5, x’MAX = -1.0, xMIN = 0.8, x’MIN = -
0.6, yMAX = 7.0, yH2 = -2.75, yS = -4.0, yH1 = -5.0, y0= -6.0, yMIN= -7.0. 

 

Thus, through the changes of free parameters we can obtain a wide variety of 

configurations of surfaces of equilibrium. We call attention that our map describes diverted 

magnetic fields without toroidal corrections. However, close the separatrix 1/x is nearly 

constant, so we can get a good approximation for the equilibrium field in large aspect ratio 

tokamaks.  
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4 – DIVERTOR MAP WITH MARTIN TAYLOR PERTURBATION 

We use the non-integrable Martin Taylor map [4] to introduce an ergodic limiter 

perturbation. The total field line map (��, ��) → (����, ����) considers integrable divertor 

map MD, yielding(��, ��) → (�∗, �∗), and the perturbing map MP, which gives (�∗, �∗) →

(����, ����) [3]. 

 

5 – RESULTS AND CONCLUSIONS 

Initially we are considering a simpler case with only elongation (without 

triangularity) to include a perturbation in this proposed geometry (see Fig. 4). The model 

reproduces the results quite well compared to those obtained in [3]. 

 

 (a) (b) 
Fig. 4. Perturbed Map for (a) the model described in  ref. [3] and (b) The model proposed here both 
with shear = 1.80 and m = 3. 
 

The next step we are going to consider the cases with triangularity and thus be able 

to reproduce more realistic configurations of magnetic field lines. The chaotic layer formed 

near the separatrix can be studied, as the transport of field lines and deposition patterns in 

the divertor plates. 
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