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The control of Edge Localized Modes (ELMs) [1] in tokamaks is a key issue for fusion plasma
regimes. These regimes are characterised by transport barriers, more precisely a thin layer where
the turbulent transport of heat and density is significantly reduced leading to a strong increase of
pressure gradient. Localized at the edge, this barrier is not stable and exhibits quasi-periodic relax-
ations with important energy fluxes, eventually dangerous for the tokamak wall. These relaxations
are a characteristic of ELMs. Several techniques have been suggested to stabilize or remove these
relaxations [2] in the next tokamak ITER. One promising method is based on external Resonant
Magnetic Perturbations (RMPs) at the plasma edge. These magnetic perturbations reveal a qualita-
tive control in the DIII-D [3], JET [4] and TEXTOR [5] experiments.

The control of transport barrier relaxations by RMPs is generally due to a reduction of pressure
gradient by a radial energy flux [6]. This property is attributed to the appearence of field line
stochasticity for large RMP amplitudes. However, it is not clear to which extend the externally in-
duced perturbation actually penetrates into the plasma. Magnetohydrodynamical (MHD) modeling
has shown an effective screening of RMPs by a rotating plasma [7]. This screening has also been
observed in numerical simulations with an effective velocity at the plasma edge [8].

In previous works, control of barrier relaxations have been studied by three-dimensional edge turbu-
lent simulations in presence of externally induced RMPs [9]. Recently, an extension of the previous
electrostatic model was used taking into account self-consistent electromagnetic fluctuations [10].
The aim was to study the penetration of RMP into the plasma. In the present work, the impact of
RMPs on a turbulent plasma in presence of an E×B flow will be studied. in particular, a shear
flow sufficient to generate an edge transport barrier is taken into account.

The model equations used for the plasma pressure p, the electrostatic potential φ and the electro-
magnetic flux ψ are :

(∂t +~uE ·∇)W = − 1
α

∇‖J−Gp+ν∇
2
⊥W +µ (W00−Wimp) , (1)

(∂t +~uE ·∇) p = δcGφ +χ‖∇
2
‖p+χ⊥∇

2
⊥p+S(x), (2)

∂tψ = −∇‖φ +
1
α
(J− JRMP) . (3)

Equation (1) corresponds to the vorticity equation, W = ∇2
⊥φ is the vorticity of the E×B flow~uE ,

J =∇2
⊥ψ is the parallel current fluctuation, α is proportional to the plasma β , i.e. the ratio of kinetic

to magnetic pressure. G is the magnetic curvature operator, ν is the viscosity coefficient, µ is the
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friction coefficient with the imposed vorticity Wimp = ∇2
⊥φimp = ∂ 2

x φimp. W00 corresponds to the ax-
isymmetric component of W . Eq. (2) describes the energy conservation, χ‖ and χ⊥ are respectively
the collisional heat diffusivities parallel and perpendicular to the magnetic field lines, δc is a curva-
ture parameter, and S(x) is an energy source modeling the constant heat flux from the plasma core.
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Figure 1: Radial profiles of safety factor q (a),

and imposed E×B flow vimp (b).

Eq. (3) corresponds to the Ohm’s Law, JRMP is the ex-
ternal current source generating RMPs. Simultations
are performed with the EMEDGE3D code [11]. Fol-
lowing the standard convention x, y, z represent re-
spectively the normalized local radial, poloidal and
toroidal coordinates. Introducing the safety factor q,
the main computational domain corresponds to the vol-
ume delimited by the toroidal surfaces qmin = 2.5 and
qmax = 3.5 (Fig. 1a, vertical black dash lines). The en-
ergy source S(x) is located in the region q < qmin.

In recent work [10], the penetration of RMP has been
studied in two cases : first in a quiescent plasma, with
or without imposed poloidal rotation. Second, a turbu-
lent plasma has been considered with important energy source, driving the pressure gradient above
the resistive ballooning instability threshold. Results show an effective screening due to the poloidal
rotation profile. When the poloidal rotation vanishs at the resonant RMP position, the screening
decreases strongly. The RMP penetration in turbulent plasma exhibits an effective amplification
generated by the turbulence. In presence of imposed poloidal rotation, a partial penetration of
RMP is observed.

We study the effect of RMPs on turbulent plasma in presence of imposed E×B rotation. This
imposed poloidal rotation profile is sufficient to generate a transport barrier (Fig. 1b, labelled
vimp = ∂xφimp).
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Figure 2: Radial profiles of peq (a), ∇⊥peq (b) , and screening factor (c) for different values of ψ0 and reference
cases.

The external RMP source is chosen to be resonant at the magnetic surface q0 = 3 (corresponding to

2

41st EPS Conference on Plasma Physics P1.042



r/a≈ 0.93) with the poloidal and toroidal mode number m0 = 12 and n0 = 4, respectively, for three
different RMP amplitudes ψ0 = 6.5; 13; 19.5 . The imposed poloidal rotation vimp vanishes at the
position q = 3 to allow the RMP penetration [10] and defines the barrier position. Two reference
cases are defined by the turbulent plasma without RMP, in presence or not of imposed poloidal
rotation (labelled ψ0 = 0 and ψ0 = 0, vimp). A vacuum case has been defined (without plasma
reponse in the Ohm’s Law), to quantify the screening via the factor Smn = |ψmn|/|ψvac

mn (q=m/n)| where
ψmn corresponds to the Fourier component of ψ for the poloidal and toroidal mode number (m, n),
respectively .

Numerical simulations lead to statistically stationary states. The time average of the equilibrium
pressure shows an enhanced pressure gradient in presence of the E×B rotation (Fig. 2a and b, blue
dash line) compared to the reference turbulent case without imposed rotation (full blue line). In
presence of RMP (red and black curve), the pressure decreases in the inner region q < q0 with the
RMP amplitude ψ0. This can be attributed to a local reduction of the pressure gradient (Fig. 2b)
exhibits in presence of RMP at the the position r/a ≈ 0.93 (q0). This local flattening, increasing
with the RMP source amplitude, is due to the partial penetration of RMP in the plasma (Fig. 2c).
The local reduction of the pressure gradient in presence of RMP is essential for the control of
transport barrier relaxations like ELMs.

The local reduction of ∇⊥peq can be explained by the flux balance obtained from the energy equa-
tion (Eq. 2). If we consider the spatial average in poloidal and toroidal directions of the energy
equation, we obtain :

∂t peq =−∂x

[〈
p∂yφ

〉
y,z−χ‖

〈
∂yψ∇‖p

〉
y,z−χ⊥∂x peq

]
+S(x),

where peq = 〈p〉y,z. For a steady state, we integrate in radial direction x :

Qturb
conv +Q∆B +Qcoll = Qtot ,

with Qturb
conv =

〈
p∂yφ

〉
y,z, the turbulent convective flux, Q∆B = −χ‖

〈
∂yψ∇‖p

〉
y,z, the parallel heat

flux on magnetic field lines, Qcoll = −χ⊥∂x peq, the collisional flux and the total heat flux Qtot =´
S (x)dx. In presence of RMP (Fig. 3a), the time average of the convective flux and the parallel

heat flux (Fig. 3b) are roughly unchanged near the resonant surface q0 when increasing the RMP
amplitude. If we consider the stationary part of the convectif flux, we can write :

〈Qconv〉t = Qstat
conv +

〈
Qturb

conv

〉
t
,

The stationary component of the convective flux Qstat
conv =

〈
〈p〉t ∂y 〈φ〉t

〉
y,z (Fig. 3c) is identified to

be at the origin of the local flattening of the pressure gradient, proportionnal to the collisional flux.
The stationary convective flux is important near the resonant surface q0 (r/a = 0.93), and increases
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Figure 3: Radial profiles of time average of Qconv (a), Q∆B (b) and Qstat
conv (c) for different values of ψ0 and reference

cases.

with the RMP amplitude. As the parallel heat flux does not change significantly with the RMP
at the barrier position and the total heat flux is constant, the local flattening of pressure gradient
(collisional heat flux) is essentially due to Qstat

conv.

To conclude, when RMP is applied on turbulent plasma with transport barrier, the 3D simultations
show a partial penetration of the imposed magnetic perturbation [10]. In presence of RMPs, a local
flattening of the pressure gradient is observed, explained by the generation of stationary convective
flux associated with the magnetic perturbation. This flux induces a local erosion of the pressure gra-
dient on the RMP resonant surface. These results show that transport due to stationary convection
cells associated with the magnetic perturbation can contribute significantly to the local reduction of
the pressure gradient at the transport barrier. The latter is known to be at the origin of the control of
barrier relaxations by RMPs. The work on the demonstration of effective control in 3D turbulence
simulations with self-consistent RMP penetration is in progress.
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