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Important to the edge localized modes (ELM) dynamics, the rotation of the ELM and their

associated filaments has recently been measured during the ELM crash in KSTAR [1] and in

ASDEX Upgrade [2]. It is unclear which mechanism is responsible for the ELM rotation, either

the E×B or the diamagnetic velocity during the growth phase of the ELM.

To study this problem we have carried out analytical linear calculations and numerical simu-

lations of the ELM rotation using the reduced magnetohydrodynamic JOREK code [3]. Plasma

flows such as the toroidal rotation, the bi-fluid diamagnetic effects, and neoclassical poloidal

friction were recently implemented in the code [4]. The introduction of flows in the numerical

model demonstrated the emergence of a strong ELM rotation due to the presence of the dia-

magnetic effects. We show here that the combination of the diamagnetic, E× B and parallel

velocities is responsible for the ELM rotation in the growth phase. A simple relation is found

based on theoretical considerations.

Analytical analysis of the ballooning instability rotation

To calculate the dispersion relation associated to the ballooning instability the reduced MHD

equations are considered. We use the gyro-viscous cancellation to simplify the equation over

the electric potential (see e.g. [5]). The ballooning representation is used to reduce the two-

dimensional problem to one dimension (see e.g. [6]). The following ansatz is considered

Φ̃(r, θ,ϕ, t) ≈ Φ̂(θ)ei[n(ϕ−qθ)−ωt], (1)

for simplification we consider that we are placed in the plasma rotating reference frame, hence

Φ̂0 = 0.

Using these hypothesis the following dispersion relation is found
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The parameter τIC is the diamagnetic parameter and γI the ideal interchange mode growth rate. For the

notations see Ref. [4].

At the resistive (η→∞) and strong magnetic shear (s >> 1) limit this expression simplifies to
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Considering ω∗i = −ω∗e = ω∗, the roots of the polynomial can be found using Cardano’s method. We also

consider the change of variable, ω = iγ, the dispersion relation can be simplified to

γ
(
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∗

)
= γ3

η. (5)

Two limits can be identified in Eq. (5) for γη >> ω∗ the solution γ ≈ γη and if γη << ω∗ −→ γ ≈ γ3
η/ω

2
∗.

In the general case three roots exist, one real and two complex conjugates, as also found in [7]. The most

unstable root is always the real one, as ω = iγ, the value of ω is pure imaginary, hence at this limit the

unstable mode does not rotate.

Also we can consider the ideal case, η→ 0, and small magnetic shear (s≈ 1). In this case the dispersion

relation Eq. (2) simplifies to the second order polynomial

ω2−ω∗iω+γ2
I = 0. (6)

Two distinct roots exist
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Figure 1: Evolution of the roots with with the dia-

magnetic frequency ω∗.

The system is ideally unstable if: ω∗i
2 < 4γ2

I . And

the ideal rotation frequency of the mode is: ω∗i /2, as

also explained in [8]. In this case the unstable mode

rotates at half of the diamagnetic frequency in the ion

diamagnetic direction.

The roots of the general dispersion relation, Eq (2),

are computed numerically. We find that in realistic

cases, i.e., at low resistivity (η < 10−7) the most un-

stable root is close to the solution at the zero resistiv-

ity small shear limit, Eq. (7). In Fig. 1 three computed

cases are compared to the analytical solution Eq. (7).

One can observe that the imaginary part of the root is
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close to the theory if the shear is small. With increasing shear, the mode is more unstable. On the other

hand the real part of the root matches very well the analytical solution. The rotation of the mode in the

rotating plasma reference frame is ω∗/2, this was also found in [8].

From this analysis we expect to find the ELM in the JOREK numerical simulations rotating with

the plasma plus half the diamagnetic velocity V∗. The mode speed in the poloidal plane (along the flux

surfaces) can be written

Vmode = VE×B + V� ·bθ +
V∗

2
. (8)

Numerical simulations and comparison with the theory

The JOREK simulations are performed with two toroidal modes n = 0 and n = 6. For the considered

geometry and initial condition the plasma is unstable for the n = 6 toroidal mode. The energy of this

mode grows and saturates (see Fig. 2 (left)). The growth rate of the mode decreases if the diamagnetic

parameter τIC is increased. In Fig. 2 (right) we observe that the mode rotates faster if the diamagnetic

effects are included. For all the simulations we find that the rotation is in the electron diamagnetic or

E× B direction. It is important to note that the rotation of the modes is quasi-uniform. In Fig. 3 (left)

the radial profiles of the mode rotation speed do not show a strong shear. These profiles are calculated

following the displacement of the maxima of the modes during the linear growth phase along the flux

surfaces in the poloidal plane.
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Figure 2: (Left) Magnetic energy of the toroidal n = 6 mode for 3 values of the diamagnetic parameter τIC

with neoclassical tensor and parallel velocity source, noted with the keyword with, and without this two features,

noted as w/o. For all cases η = 10−7. (Right) Magnetic flux perturbations, with a toroidal mode number n = 6, for

three different times, with fixed 20 Alfvén times between each image. Without diamagnetic effects (top) and with

diamagnetic effects (bottom). The rotation is anticlockwise, i.e. in the electron diamagnetic or E×B direction.

In Fig. 3 (right) we show the velocity profile of the mode Vmode calculated with the analytical Eq. (8).

We observe that even if the diamagnetic velocity V∗ is in the ion diamagnetic direction (by convention

here negative) the plasma motion (VE×B plus V� · bθ) compensates and makes the modes rotate in the

opposite direction (positive). In fact at the position of the strong pressure gradient (pedestal) the total

velocity of the mode Vmode is always in the electron diamagnetic or E×B direction.
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Figure 3: The positive velocity convention means in the electron diamagnetic or E× B direction. (Left) Radial

profile of the ELM rotation velocity along the flux surfaces. (Right) Radial profile of the poloidal velocity Vmode

defined in Eq. (8) and pressure profile.

To quantify the rotation velocity of the ELM in the linear phase we plot, Fig. 4, the velocity of the

modes inside the separatrix (extracted from the profiles Fig. 3 (left) for ψN < 0.95) as a function of the

diamagnetic parameter (defined in Eq. (3)). This is done for different resistivities and parallel thermal

diffusivities (κ�). We observe in Fig. 4 that the rotation does not depend greatly on the resistivity and

parallel conductivity. The rotation velocity evolves linearly with the diamagnetic parameter τIC in agree-

ment with Eq. (8). In fact Vmode scales as ≈ VE×B + V∗/2. We can do the approximation that VE×B is

proportional to τIC at the pedestal (in this region the electron pressure gradient is the most important

component of the radial electric field). If the E×B velocity is defined in the positive direction the ELM

velocity scales approximately as

Vmode ≈ VE×B +
V∗

2
∝ τIC −

τIC

2
= +

τIC

2
, (9)

in the electron diamagnetic or E×B velocity direction. This velocity direction and the magnitude of the

speed of the ELM rotation (several km/s) are in agreement with the experimental observations (e.g. [1,

2]).
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Figure 4: Rotation velocity of the ELM as a function

of the diamagnetic parameter and comparison with the

analytical expression Eq. (8) taked at ψ95 (i.e. at the

pedestal).
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