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Important to the edge localized modes (ELM) dynamics, the rotation of the ELM and their
associated filaments has recently been measured during the ELM crash in KSTAR [1] and in
ASDEX Upgrade [2]. It is unclear which mechanism is responsible for the ELM rotation, either
the E X B or the diamagnetic velocity during the growth phase of the ELM.

To study this problem we have carried out analytical linear calculations and numerical simu-
lations of the ELM rotation using the reduced magnetohydrodynamic JOREK code [3]. Plasma
flows such as the toroidal rotation, the bi-fluid diamagnetic effects, and neoclassical poloidal
friction were recently implemented in the code [4]. The introduction of flows in the numerical
model demonstrated the emergence of a strong ELM rotation due to the presence of the dia-
magnetic effects. We show here that the combination of the diamagnetic, E X B and parallel
velocities is responsible for the ELM rotation in the growth phase. A simple relation is found

based on theoretical considerations.

Analytical analysis of the ballooning instability rotation

To calculate the dispersion relation associated to the ballooning instability the reduced MHD
equations are considered. We use the gyro-viscous cancellation to simplify the equation over
the electric potential (see e.g. [5]). The ballooning representation is used to reduce the two-

dimensional problem to one dimension (see e.g. [6]). The following ansatz is considered
(1,0, ¢,1) ~ D)0~ (1

for simplification we consider that we are placed in the plasma rotating reference frame, hence
@ = 0.

Using these hypothesis the following dispersion relation is found
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The parameter 7;¢ is the diamagnetic parameter and vy, the ideal interchange mode growth rate. For the
notations see Ref. [4].

At the resistive (7 — oo) and strong magnetic shear (s >> 1) limit this expression simplifies to
1/3
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Considering w; = —w, = wx, the roots of the polynomial can be found using Cardano’s method. We also

consider the change of variable, w = iy, the dispersion relation can be simplified to
(P +wl)=7 (5)

Two limits can be identified in Eq. (5) for y,, >> w. the solution y =y, and if y,, << w. — y = yf]/ w?.
In the general case three roots exist, one real and two complex conjugates, as also found in [7]. The most
unstable root is always the real one, as w = iy, the value of w is pure imaginary, hence at this limit the
unstable mode does not rotate.

Also we can consider the ideal case, n — 0, and small magnetic shear (s ~ 1). In this case the dispersion

relation Eq. (2) simplifies to the second order polynomial

w? - wiw +y% =0. (6)
Two distinct roots exist
wi+ 1/wj2—4y%
wip = 5 : (7
The system is ideally unstable if: a):.‘z < 4)/?. And 8.00 T P p—
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also explained in [8]. In this case the unstable mode 5 4.00 \\
rotates at half of the diamagnetic frequency in the ion 200 : ?\\
diamagnetic direction. o0 |
The roots of the general dispersion relation, Eq (2), 15.00
are computed numerically. We find that in realistic § 10.00
cases, i.e., at low resistivity (1 < 10~7) the most un- 5.00 NP KK’;___\\
stable root is close to the solution at the zero resistiv- 0.00 0/5 e s
ity small shear limit, Eq. (7). In Fig. 1 three computed O

. . Figure 1: Evolution of the roots with with the dia-
cases are compared to the analytical solution Eq. (7). ]
magnetic frequency ws.

One can observe that the imaginary part of the root is
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close to the theory if the shear is small. With increasing shear, the mode is more unstable. On the other
hand the real part of the root matches very well the analytical solution. The rotation of the mode in the
rotating plasma reference frame is w../2, this was also found in [8].

From this analysis we expect to find the ELM in the JOREK numerical simulations rotating with
the plasma plus half the diamagnetic velocity V*. The mode speed in the poloidal plane (along the flux
surfaces) can be written

Vinode = VExB+ V) -bg+ V?* @)
Numerical simulations and comparison with the theory

The JOREK simulations are performed with two toroidal modes n = 0 and n = 6. For the considered
geometry and initial condition the plasma is unstable for the n = 6 toroidal mode. The energy of this
mode grows and saturates (see Fig. 2 (left)). The growth rate of the mode decreases if the diamagnetic
parameter 7;¢ is increased. In Fig. 2 (right) we observe that the mode rotates faster if the diamagnetic
effects are included. For all the simulations we find that the rotation is in the electron diamagnetic or
E X B direction. It is important to note that the rotation of the modes is quasi-uniform. In Fig. 3 (left)
the radial profiles of the mode rotation speed do not show a strong shear. These profiles are calculated

following the displacement of the maxima of the modes during the linear growth phase along the flux

surfaces in the poloidal plane.
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Figure 2: (Left) Magnetic energy of the toroidal n = 6 mode for 3 values of the diamagnetic parameter Tic
with neoclassical tensor and parallel velocity source, noted with the keyword with, and without this two features,
noted as w/o. For all cases n = 107". (Right) Magnetic flux perturbations, with a toroidal mode number n = 6, for
three different times, with fixed 20 Alfvén times between each image. Without diamagnetic effects (top) and with

diamagnetic effects (bottom). The rotation is anticlockwise, i.e. in the electron diamagnetic or E X B direction.

In Fig. 3 (right) we show the velocity profile of the mode V,,,4. calculated with the analytical Eq. (8).
We observe that even if the diamagnetic velocity V* is in the ion diamagnetic direction (by convention
here negative) the plasma motion (Vgxp plus vy - bg) compensates and makes the modes rotate in the
opposite direction (positive). In fact at the position of the strong pressure gradient (pedestal) the total

velocity of the mode V54, is always in the electron diamagnetic or E X B direction.
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Figure 3: The positive velocity convention means in the electron diamagnetic or E X B direction. (Left) Radial
profile of the ELM rotation velocity along the flux surfaces. (Right) Radial profile of the poloidal velocity Vio4e
defined in Eq. (8) and pressure profile.

To quantify the rotation velocity of the ELM in the linear phase we plot, Fig. 4, the velocity of the
modes inside the separatrix (extracted from the profiles Fig. 3 (left) for ¢ < 0.95) as a function of the
diamagnetic parameter (defined in Eq. (3)). This is done for different resistivities and parallel thermal
diffusivities (k). We observe in Fig. 4 that the rotation does not depend greatly on the resistivity and
parallel conductivity. The rotation velocity evolves linearly with the diamagnetic parameter 7;¢ in agree-
ment with Eq. (8). In fact V4. scales as ~ Vgxp + V*/2. We can do the approximation that Vg«p is
proportional to 7;c at the pedestal (in this region the electron pressure gradient is the most important
component of the radial electric field). If the E x B velocity is defined in the positive direction the ELM

velocity scales approximately as

¥ TIC TIC
Vinode = VExB + 5 < TiCc— > = +7, 9

in the electron diamagnetic or E X B velocity direction. This velocity direction and the magnitude of the

speed of the ELM rotation (several km/s) are in agreement with the experimental observations (e.g. [1,
60
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