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1. Introduction

There exists two main operational regimes in a tokamak fusion device: the low-confinement

Figure 1: Schematic pressure profile for L-

and H-Mode

mode (L-Mode) and the high-confinement mode (H-

Mode). The H-Mode is distinguished from the L-Mode

through a steep pressure gradient region at the edge,

called the pedestal (Fig. 1). Fusion devices will likely

operate in H-Mode to optimise fusion performance.

However the steep edge pressure gradient usually trig-

gers Edge Localised Modes (ELMs). These are quasi-

periodic instabilities which have a filamentary structure,

and grow very rapidly. They release a large amount of

energy and particles which can erode components on fu-

ture fusion devices, such as ITER. Therefore it is very

important to understand ELMs and their associated en-

ergy.

2. Analytical Calculations

Figure 2: Spatial components of the coordi-

nate system where B0 = ∇ψ×∇α

We employ the Clebsch coordinate system which defines

the equilibrium magnetic field as B0 = ∇ψ×∇α where

ψ labels the flux surfaces, and therefore represents a ra-

dial component, and α labels the field lines on the flux

surfaces.

Wilson and Cowley, [1], extended earlier calcula-

tions, [2, 3, 4], to tokamak geometry and derived the

following ballooning mode envelope equation from non-

linear MHD which describes the displacement ξ of a

field-aligned flux tube:
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∂ 3
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∂ t︸ ︷︷ ︸
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where ξ = ∂u
∂α

and an overbar means an average over α .

Coefficients that depend on the equilibrium and leading order linear ballooning mode solution have

been absorbed into re-scaled variables so that we can investigate the generic ballooning mode envelope

equation. The pre-factor of the linear instability drive term represents how close the system is to marginal

stability, assuming a maximum in the local growth rate at ψ ∼ ψ0. We can express this variable in terms

of the pressure gradient: δ =
p′0−p′c

p′c
where p′0 is the pressure gradient and p′c is the critical pressure

gradient for ballooning instability, so δ = 0 at marginal stability.

3. Results and Discussion

Evolution

For a first investigation we perform a simple balancing of the non-linear terms of the ballooning mode

envelope equation which leads to the following relations:

ξ ∝ (t0− t)−2 ∆ψ2

∆α
∝ ξ ∆α ∝ (t0− t)0.5

∆ψ ∝ (t0− t)−0.75 (2)

where ∆α is the width of the filament in the ∇α direction and ∆ψ is the width of the filament in the ∇ψ

direction; t0 is a quantity that depends on initial conditions. The last two relations are derived using the

viscosity term.

Indices, p, of the asymptotic form ∼ (t0− t)p

Summary of Results pξ pα pψ

(2pψ−pα )
pξ

Theory no viscosity -2. x x 1

Simulation no viscosity -2.62 1.51 -0.48 0.94

Theory with viscosity -2. 0.5 -0.75 1

Simulation (να = 0.01) -3.16 2.21 -0.53 1.03

The predicted indices (see table) indicate that the width ∆α is shrinking and the width ∆ψ is growing as

the finite time singularity, t→ t0, is approached. Numerical simulations confirm this (Fig. 3).
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Figure 3: Top: Contour plot of the displacement ξ when non-

linear behaviour starts to dominate. Bottom: Contour plot deeper

into the nonlinear region: ξ widens in ψ and narrows in the α-

direction.

The results always exhibit an explo-

sive behaviour of the filaments in-

dependent of whether or not viscos-

ity is included. However, the sim-

ple balancing of terms does not give

accurate quantitative results for the

individual indices pξ , pα and pψ ,

(see table). Nevertheless, the relation
(2pψ−pα )

pξ

≈ 1, which comes from bal-

ancing the non-linear growth drive

term and the quasi-linear nonlinear-

ity term, is very robust, agreeing well

with simulations with and without

viscosity. This indicates that these

two terms are dominating the evolu-

tion close to the finite time singular-

ity.

ELM Cycle Model

Here, we propose a semi-heuristic

model to simulate an ELM cycle, ne-

glecting the small scale viscosity in

the system. Starting from marginal

stability, we increase the pressure

gradient linearly in time: δ (t) = s · t, until the quadratic non-linearity term and the linear term balance.

At this time we assume that the eruption starts with an associated enhanced transport. We do not address

the transport mechanism, but impose a pressure gradient crash until the instantaneous growth rate as

predicted by Eq. (1) is zero: δ = s · t−∆δ . After this drop, the system is linearly stable, and the pressure

gradient builds towards the next crash and the cycle repeats (Fig. 4a/ 4b). The width ∆ψ and the drop in

pressure gradient ∆δ provide a prediction for the energy ejected in ELM.

4. Conclusion

We have demonstrated that the viscosity influences the evolution of the filament amplitude but also the

widths ∆α and ∆ψ . However this change of the evolution differs from theoretical prediction based on

balancing terms in the nonlinear evolution equation.

Additionally, we have introduced a semi-heuristic model which enables us to simulate a full ELM cycle.

No knowledge of the transport mechanism responsible for the crash is required for this model. Never-

theless, the model provides a prediction for the drop in the pressure gradient which allows us to estimate
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(a) Two eruptions of the displacement vec-

tor and the pressure gradient evolution;

weak shaping

(b) One eruption and the drop in the

pressure gradient; strong shaping-

oscillates after the crash in this case

Figure 4: Predictions from our heuristic model of the ELM cycle.

the energy which is released during an ELM.

The next step is to develop codes to calculate the coefficients of the ballooning mode envelope equation

for realistic tokamak geometry. These coefficients are field line averaged quantities which include most

of the geometry of the fusion devises. We can then make predictions for ELM sizes in experiments like

MAST and ASDEX Upgrade. If successfully benchmarked against the experimental data, this method

would provide predictions for ELMs in ITER.
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