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1. Introduction

There exists two main operational regimes in a tokamak fusion device: the low-confinement

mode (L-Mode) and the high-confinement mode (H-
Mode). The H-Mode is distinguished from the L-Mode
through a steep pressure gradient region at the edge,
called the pedestal (Fig. 1). Fusion devices will likely
operate in H-Mode to optimise fusion performance.
However the steep edge pressure gradient usually trig-
gers Edge Localised Modes (ELMs). These are quasi-
periodic instabilities which have a filamentary structure,
and grow very rapidly. They release a large amount of
energy and particles which can erode components on fu-
ture fusion devices, such as ITER. Therefore it is very

important to understand ELMs and their associated en-
ergy.

2. Analytical Calculations

We employ the Clebsch coordinate system which defines
the equilibrium magnetic field as By = Vy x Va where
y labels the flux surfaces, and therefore represents a ra-
dial component, and « labels the field lines on the flux
surfaces.

Wilson and Cowley, [1], extended earlier calcula-
tions, [2, 3, 4], to tokamak geometry and derived the
following ballooning mode envelope equation from non-
linear MHD which describes the displacement & of a
field-aligned flux tube:
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Figure 1: Schematic pressure profile for L-
and H-Mode

Figure 2: Spatial components of the coordi-

nate system where By = Vy xVa
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where & = g—; and an overbar means an average over Q..

Coefficients that depend on the equilibrium and leading order linear ballooning mode solution have
been absorbed into re-scaled variables so that we can investigate the generic ballooning mode envelope
equation. The pre-factor of the linear instability drive term represents how close the system is to marginal
stability, assuming a maximum in the local growth rate at ¥ ~ yy. We can express this variable in terms
@

of the pressure gradient: § = > where py, is the pressure gradient and pl. is the critical pressure

c

gradient for ballooning instability, so § = 0 at marginal stability.

3. Results and Discussion

Evolution

For a first investigation we perform a simple balancing of the non-linear terms of the ballooning mode
envelope equation which leads to the following relations:
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where Ac is the width of the filament in the V direction and Ay is the width of the filament in the Vy
direction; fy is a quantity that depends on initial conditions. The last two relations are derived using the

viscosity term.

Indices, p, of the asymptotic form ~ (zp —t)”

(2!714/—17&)
pg

Summary of Results De Pa Py

Theory no viscosity -2. X X 1

Simulation no viscosity || -2.62 | 1.51 | -0.48 | 0.94

Theory with viscosity -2. 05 |-075]1
Simulation (v¢ =0.01) || -3.16 | 2.21 | -0.53 | 1.03

The predicted indices (see table) indicate that the width A is shrinking and the width Ay is growing as

the finite time singularity, t — fo, is approached. Numerical simulations confirm this (Fig. 3).
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The results always exhibit an explo- time=5.500
sive behaviour of the filaments in- g | .
dependent of whether or not viscos- 1 — ] 455
ity is included. However, the sim- -
ple balancing of terms does not give ° Oi ] A
accurate quantitative results for the N o
individual indices pg, po and py, 1 ot
(see table). Nevertheless, the relation _2_2_‘1 P 2 2910
W ~ 1, which comes from bal- Y 2.002
ancing the non-linear growth drive . time=8.500 7 1.495
term and the quasi-linear nonlinear- g 0.985
ity term, is very robust, agreeing well s ] 0480
with simulations with and without @

s of ] -0.027
viscosity. This indicates that these I ]
two terms are dominating the evolu- —1 — - o
tion close to the finite time singular- o
ity. [ S PR

ELM Cycle Model

Here, we propose a semi-heuristic Figure 3: Top: Contour plot of the displacement & when non-
model to simulate an ELM cycle, ne- linear behaviour starts to dominate. Bottom: Contour plot deeper
glecting the small scale viscosity in into the nonlinear region: & widens in W and narrows in the o-
the system. Starting from marginal direction.

stability, we increase the pressure

gradient linearly in time: §(¢) = s -7, until the quadratic non-linearity term and the linear term balance.
At this time we assume that the eruption starts with an associated enhanced transport. We do not address
the transport mechanism, but impose a pressure gradient crash until the instantaneous growth rate as
predicted by Eq. (1) is zero: 8 = s-t — Ad. After this drop, the system is linearly stable, and the pressure
gradient builds towards the next crash and the cycle repeats (Fig. 4a/ 4b). The width Ay and the drop in

pressure gradient Ad provide a prediction for the energy ejected in ELM.

4. Conclusion

We have demonstrated that the viscosity influences the evolution of the filament amplitude but also the
widths A and Ay. However this change of the evolution differs from theoretical prediction based on
balancing terms in the nonlinear evolution equation.

Additionally, we have introduced a semi-heuristic model which enables us to simulate a full ELM cycle.
No knowledge of the transport mechanism responsible for the crash is required for this model. Never-

theless, the model provides a prediction for the drop in the pressure gradient which allows us to estimate
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Figure 4: Predictions from our heuristic model of the ELM cycle.

the energy which is released during an ELM.

The next step is to develop codes to calculate the coefficients of the ballooning mode envelope equation
for realistic tokamak geometry. These coefficients are field line averaged quantities which include most
of the geometry of the fusion devises. We can then make predictions for ELM sizes in experiments like
MAST and ASDEX Upgrade. If successfully benchmarked against the experimental data, this method
would provide predictions for ELMs in ITER.
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