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Introduction

Local gyrokinetic codes assume that for high toroidal mode number, n >> 1, the local eigen-

value Ω0(x, p) matches a unique global eigenvalue Ω for a particular choice of radius, x and

ballooning angle p. But this is only true for specific parameter sets where Ω0(x, p) has a sta-

tionary point for which a so-called isolated mode is observed [1]. It typically peaks at the out-

board mid plane, θ = 0, and has a growth rate equal to the maximum, γmax = Max(γ0(x, p)). In

general, the equilibrium profile variations reduces the global growth rate γ < γmax and shifts the

mode away from the outboard mid plane. This introduces a discrepancy between the local and

global calculations, which might have an important consequence, especially where the linear

local growth rate is used to predict the quasilinear heat and particle transport. In this work we

develop a formalism to link local and global linear gyrokinetic calculations. We have used so-

lutions from the local gyrokinetic code GS2 [3] and applied higher order ballooning theory [4]

to reconstruct the global linear electrostatic ITG modes in the s−α equilibrium model.

The Model and the technique

In this work, for simplicity, we have employed the s−α equilibrium model, which assumes

high aspect ratio and circular magnetic flux surfaces. We have limited ourselves to linear elec-

trostatic ITG modes with adiabatic electrons. The model parameters, used throughout this work,

are listed in table 1. We have scanned GS2 many times over a range of radial points, x, and bal-

looning angle, −π ≤ p ≤ +π . This can provide the local mode structure ξ (x,θ , p) and the

complex mode frequency Ω0(x, p). Here, x = (r− r0)/a measures the distance from some ra-

tional surface at r = r0 and normalised to the minor radius a. The main equation that lies at

the heart of this paper is the Fourier ballooning representation for the electrostatic potential,

φ(x,θ):

φ(x,θ) =
∫

∞

−∞

ξ (x, p,θ)exp(−inq0θ)exp(−inq′x(θ − p))A(p)d p, (1)

where the amplitude envelope A(p) can be obtained from higher order ballooning theory by

firstly fitting a model to Ω0(x, p) using Fourier and Taylor expansion techniques as follows:

Ω0(x, p) =
Nk

∑
k=0

2

∑
m=0

a(m)
k xmcos(kp), (2)

41st EPS Conference on Plasma Physics P1.067



Table 1: The model parameters that have been used throughout this paper. Note that they have

been evaluated at mid radius, where x = r−r0
a = 0.

Parameter ŝ q0 R/LT R/Ln kyρi ε a R β nq′ νii× R
vti

Ti
Te

Value 1.5 1.4 17.0 2.2 0.45 0.18 0.27m 1.50m 0.0 300 0.8 1.0

where we retain Nk Fourier modes. Imposing the eigenvalue constraint Ω = Ω0(x, p) and using

equation 1 to transform x and x2 we have:

x−→ −1
inq′

1
A(p)

dA(p)
d p

x2 −→ −1
n2q′2

1
A(p)

dA2(p)
d p2 (3)

One can then rewrite equation 2 as the following differential equation for A(p) and its eigen-

value Ω:[
Nk

∑
k=0

a2
kcos(kp)

]
d2A(p)

d p2 −

[
inq′

Nk

∑
k=0

a1
kcos(kp)

]
dA(p)

d p
−

[
n2q′2

Nk

∑
k=0

a0
kcos(kp)

]
A(p)

=−
[
n2q′2Ω

]
A(p) (4)

Solution of this equation provides A(p) which can be used, along with ξ to calculate the global

mode structures, φ(x,θ), from equation 1.

The radial ηi profile

Figure 1: The local real frequency ω0(x, p) (a), growth

rate γ0(x, p) (b) and the poloidal cross section for the re-

constructed global mode structure, φ(x,θ) (c).

We introduce a quadratic radial pro-

file for the mode drive ηi, namely ηi =

17.00−1500x2. For simplicity, we have

assumed that all other equilibrium pro-

files are constant over the radial domain

of interest. The numerical solutions of

equation 4 shows that the global eigen-

value Ω converges to a constant value

for k ≥ 6. For this reason in our cal-

culations we have used the number of

Fourier modes, Nk = 7. As we expected,

we have found that all the coefficients

with m = 1 are zero. As we an see from

figure 1, both real frequency ω0 (a) and
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growth rate γ0 (b) are stationary at x = 0, which leads to a highly unstable global mode, recon-

structed using equation 1, known as the isolated mode [1] (figure 1-c). This mode peaks at the

outboard mid-plane at θ = 0 with growth rate, normalised to vti
R , γ = 0.461. Here vti is the ion

thermal speed. When the toroidal mode number, n >> 1, this global growth rate matches the

maximum value of local growth rate γ0(x, p), i.e γ = γ0(0,0)−(∼ (1/n)). This is often assumed

in local flux tube calculation. However it is true when the effect of other profile variations are

not taken into account. Such a profile variation, as we see in the following section, introduces a

discrepancy between the local and global growth rates.

Flow shear and profile variation effects

The effect of flow shear has been investigated through a Doppler shift in real frequency,

Ω0 → Ω0 + nΩ′x = (ω0 + nΩ′x)+ iγ0. Where Ω′ = dΩR/dx, ΩR is linear in x and represents

the rotational angular frequency of the surfaces with respect to the rational surface at x = 0. The

flow shear, Ω′, removes the stationary point from Ω0, modifying the isolated mode.

Figure 2: The growth rate spectrum as a function of flow shear,

nΩ′, without (a) and with (b) profile variation effects. The contour

plot for the reconstructed global mode structures for nΩ′ = 0 are

also presented for each case.

Depending on the sign of

the flow shear, the reconstructed

global mode shifts upward or

downward with respect to the out

board mid plane and reduces its

growth rate, i.e γ(Ω′ 6=0) < γmax.

Furthermore, we introduce profile

variation using a radially increas-

ing q-profile, q = 3.9(r/a)ŝ, with

constant magnetic shear ŝ = 1.5.

This breaks the poloidal symme-

try of the the isolated mode about

the out board mid plane and shifts

it slightly downward with a slight

reduction, ≈ 3%, in the growth

rate. It also introduces an asym-

metry, which is absent otherwise

(see figure 2-a), into the growth

rate spectrum with respect to the sign of the flow shear (see figure 2-b). As can be seen from

figure 2-b, for a critical value of flow shear, nΩ′=-1.5, the growth rate reaches it is maximum

value; the effect of the flow and q-profile variations cancel, and an isolated mode is observed.
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This finding, that we have obtained purely from solutions of the local gyrokinetic code GS2,

has also been observed in global gyrokinetic simulations [2].

Conclusion

We have used solutions from a local gyrokinetic code, GS2, and combined it with higher order

ballooning theory to reconstruct the global mode structures. A quadratic ηi profile yields an

isolated mode with strong growth rate that peaks at θ = 0. Including a radial q-profile variation

breaks the poloidal symmetry of the isolated mode about θ = 0 and reduces its growth rate.

It also introduces an asymmetry to the growth rate spectrum with respect to the sign of flow

shear. More generally we do not expect the global gyrokinetic codes to capture an isolated

mode, except for a critical value of flow shear. In this work we have developed a powerful

technique that enables us to compare the linear growth rate calculations between local and

global simulations, for different radial profile variations. In our future work, investigating the

effect of magnetic flux surface shaping together with taking realistic experimental tokamak

geometries into consideration will be carried out.
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