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Using local gyrokinetic codes to study global ITG modes in tokamaks
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Introduction

Local gyrokinetic codes assume that for high toroidal mode number, n >> 1, the local eigen-
value Qq(x, p) matches a unique global eigenvalue Q for a particular choice of radius, x and
ballooning angle p. But this is only true for specific parameter sets where Qq(x, p) has a sta-
tionary point for which a so-called isolated mode is observed [1]. It typically peaks at the out-
board mid plane, 6 = 0, and has a growth rate equal to the maximum, Y, = Max(%(x, p)). In
general, the equilibrium profile variations reduces the global growth rate ¥ < ¥, and shifts the
mode away from the outboard mid plane. This introduces a discrepancy between the local and
global calculations, which might have an important consequence, especially where the linear
local growth rate is used to predict the quasilinear heat and particle transport. In this work we
develop a formalism to link local and global linear gyrokinetic calculations. We have used so-
lutions from the local gyrokinetic code GS2 [3] and applied higher order ballooning theory [4]

to reconstruct the global linear electrostatic ITG modes in the s — & equilibrium model.

The Model and the technique
In this work, for simplicity, we have employed the s — o equilibrium model, which assumes
high aspect ratio and circular magnetic flux surfaces. We have limited ourselves to linear elec-
trostatic ITG modes with adiabatic electrons. The model parameters, used throughout this work,
are listed in table 1. We have scanned GS2 many times over a range of radial points, x, and bal-
looning angle, —m < p < +x. This can provide the local mode structure &(x,0,p) and the
complex mode frequency Qq(x, p). Here, x = (r — rp) /a measures the distance from some ra-
tional surface at r = ro and normalised to the minor radius a. The main equation that lies at
the heart of this paper is the Fourier ballooning representation for the electrostatic potential,
O(x,0): _
0(x,0) = [ &(x,p.6)exp(~ingo) exp(—ing'x(6 — p))A(p)dp. n

where the amplitude envelope A(p) can be obtained from higher order ballooning theory by

firstly fitting a model to Qq(x, p) using Fourier and Taylor expansion techniques as follows:

Ny 2

Qo(x,p) = Z Z a](cm)xmcos(kp), (2)

k=0m=0
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Table 1: The model parameters that have been used throughout this paper. Note that they have

been evaluated at mid radius, where x = —2 = 0.

Parameter | § | qo | R/Lt | R/L, | kypi | € a R B | nd | vixZX

Vti

i |

Value 1.5(14] 170 | 22 {045 |0.18 | 0.27m | 1.50m | 0.0 | 300 0.8 1.0

where we retain N; Fourier modes. Imposing the eigenvalue constraint Q = Qq(x, p) and using

equation 1 to transform x and x> we have:

—1 1 dA(p)

ing' A(p) dp

—1 1 dA%*(p) 3)
n’q'> A(p) dp?

o

One can then rewrite equation 2 as the following differential equation for A(p) and its eigen-

value Q:

Nie 2 N
[Z a%cos(kp)] d;;f) - [inq/ Z aicos(kp)

k=0

A(p)

A Ny
dAlp) di?p) - [nquz Z alcos(kp)

k=0
=—[*¢"QJA(p) @

Solution of this equation provides A(p) which can be used, along with & to calculate the global

mode structures, @ (x, 6), from equation 1.

The radial n; profile

We introduce a quadratic radial pro-

Real frequency wo(X,p) Growth rate Yo(X,p)
1.11 0.47
0.05 Kl 086 [9) ( \ 0.51
0.61 0.16
= 0.00 0.36 0.00
0.10 -0.16
-0.15 -0.31

file for the mode drive 7n;, namely n; =

17.00 — 1500x. For simplicity, we have

assumed that all other equilibrium pro-  -0.0s \ ’
files are constant over the radial domain -0 -05 00 05 1.0 10 =05 00 0
p(m) P("
of interest. The numerical solutions of 100 1.00
— 0.60
equation 4 shows that the global eigen- 50 Y| .
& = :
— 0 =
value € converges to a constant value N—SO = |j-0.20
: . 5, = _
for k > 6. For this reason in our cal- -100 S5 ?'gco)
culations we have used the number of —-100-50 0 50 100

R (Pi)
Fourier modes, N, = 7. As we expected,

we have found that all the coefficients Figure 1: The local real frequency wo(x,p) (a), growth

with m = 1 are zero. As we an see from rate Yo(x, p) (b) and the poloidal cross section for the re-

figure 1, both real frequency oy (a) and constructed global mode structure, ¢(x,0) (c).
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growth rate 7y (b) are stationary at x = 0, which leads to a highly unstable global mode, recon-
structed using equation 1, known as the isolated mode [1] (figure 1-c). This mode peaks at the
outboard mid-plane at 6 = 0 with growth rate, normalised to %, Y= 0.461. Here v;; is the ion
thermal speed. When the toroidal mode number, n >> 1, this global growth rate matches the
maximum value of local growth rate y(x, p),i.e Y= %(0,0) — (~ (1/n)). This is often assumed
in local flux tube calculation. However it is true when the effect of other profile variations are

not taken into account. Such a profile variation, as we see in the following section, introduces a

discrepancy between the local and global growth rates.

Flow shear and profile variation effects

The effect of flow shear has been investigated through a Doppler shift in real frequency,
Qo — Qo +nQ'x = (wy + nQ'x) + iyy. Where Q' = dQpg/dx, Qg is linear in x and represents
the rotational angular frequency of the surfaces with respect to the rational surface at x = 0. The
flow shear, ', removes the stationary point from Q, modifying the isolated mode.

Depending on the sign of

the flow shear, the reconstructed 100t ] e
0 — = 0.60
global mode shifts upward or 50 = =\ 850
downward with respect to the out \:’ 0 - g % .O 0
board mid plane and reduces its ~30f § § ‘

. 100 & ~ |[-060
growth rate, i.e Y(q/0) < Ynar- . - . g ~1.00
Furthermore, we introduce profile ~100-50_0 50/100 ~100-50 0 S50\100

R (p) R (o)

variation using a radially increas- 8 ﬁ{é 7 : \
ing g-profile, g = 3.9(r/a)’, with (45 T . ‘|
constant magnetic shear § = 1.5. Y 8:1; x*X x*X . i
This breaks the poloidal symme- g'ﬁ ~a . b

40
try of the the isolated mode about 6 -4 -2 0 2 4 6-6 -4 -2 0 2 4
the out board mid plane and shifts 103 nQ)’

it slightly downward with a slight . _
Figure 2: The growth rate spectrum as a function of flow shear,

reduction, ~ 3%, in the growth nQ/, without (a) and with (b) profile variation effects. The contour

rate. It also introduces an asym- plot for the reconstructed global mode structures for nQ' = 0 are

metry, which is absent otherwise ¢, presented for each case.
(see figure 2-a), into the growth

rate spectrum with respect to the sign of the flow shear (see figure 2-b). As can be seen from
figure 2-b, for a critical value of flow shear, nQ'=-1.5, the growth rate reaches it is maximum

value; the effect of the flow and g-profile variations cancel, and an isolated mode is observed.
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This finding, that we have obtained purely from solutions of the local gyrokinetic code GS2,

has also been observed in global gyrokinetic simulations [2].

Conclusion

We have used solutions from a local gyrokinetic code, GS2, and combined it with higher order
ballooning theory to reconstruct the global mode structures. A quadratic 7); profile yields an
isolated mode with strong growth rate that peaks at 8 = 0. Including a radial g-profile variation
breaks the poloidal symmetry of the isolated mode about 6 = 0 and reduces its growth rate.
It also introduces an asymmetry to the growth rate spectrum with respect to the sign of flow
shear. More generally we do not expect the global gyrokinetic codes to capture an isolated
mode, except for a critical value of flow shear. In this work we have developed a powerful
technique that enables us to compare the linear growth rate calculations between local and
global simulations, for different radial profile variations. In our future work, investigating the
effect of magnetic flux surface shaping together with taking realistic experimental tokamak

geometries into consideration will be carried out.
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