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Introduction

Numerical studies of the interaction between drift waves on the one hand and zonal flows on

the other have been performed in a self-consistent nonlinear sheared-slab resistive Hasegawa-

Wakatani-based drift wave system, with the goal to examine zonal flow behavior patterns in the

according regimes, including their emergence above a certain threshold ρcrit (with ρ defined

as the ratio between ρs, the ion sound Larmor radius, and L⊥, the length scale of maximal

drift wave growth for a given parallel shear length). For the first time in such a system, transport

bifurcations have been observed. These correlate both with density corrugations and a secondary

zonal flow asymmetry - leading to steepened negative (those in the electron diamagnetic drift

direction) and flattened positive flows. Not only has this bifurcation containing two transport

regimes been explained qualitatively, but it has also been shown why a threshold parameter for

the emergence of zonal flows has to exist.

The numerical basis of this work has been provided by NLET, a two-fluid code from IPP [3]

simulating a turbulent cold-ion sheared-slab resistive Hasegawa-Wakatani drift-wave system:

dtn = dt∇2
⊥ϕ (1)

ρ−3dt∇2
⊥ϕ = −∂ 2

∥ (ϕ −n) (2)

The examined system is not just of academic interest. Drift wave turbulence is the most

important ingredient in the high-gradient tokamak edge (in the vicinity of internal transport

barriers such as the H-mode) and it even features in a range of other systems, including the

atmospheres of gas giants (in that case, geostrophic modes take the place of the drift waves).

Two transport regimes

The general drift wave growth rate in the non-adiabatic, shearless case can be determined

from eqns. (1) & (2) as γ = ℑ(ω) ∝
[
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with the approximation γ = ω ∗2
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⊥/k2
∥, leading to a mixing length estimate for the turbulent

transport, with the resulting diffusion coefficient D = γ /⃗k2
⊥ inclduing k⊥, a quantity which can

be determined either via ρs or via L⊥. The ρs-dominated high-ρ-regime, for example, leads to

DL⊥|k⊥=̂ρs =
γL⊥
k2

L⊥
|k⊥=̂ρs ∝ ρ−2 and Dρs |k⊥=̂ρs =

γρs
k2

ρs
|k⊥=̂ρs ∝ ρ0.
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The same can be found for the L⊥-dominated low-ρ-regime as well. The transition between

both regimes is located at approx. ρ ≈ 0.5, (coinciding well with the onset of flow formation,

as will be shown below). A simple relation between both scales can be derived:
DL⊥
Dρs

= ρ−2.

Notably, there is a strong correlation with a Dρs-plateau in the high-ρ-regime, which holds

up well under high-resolution numerical test runs.

ρ-depence

It is a considerable numerical challenge to achieve high values of ρ - which are a requirement

for fully developed flows - due to resource demand scaling with ρ3 (the transport times scale

with k−2D−1 - or ρ4 - while the drift wave scale is just proportional to ρ) as well as due to

increasing convergence issues requiring numerous parameter scans. These simulations have thus

been performed on the powerful Helios and HPC-FF clusters, yielding a near-perfect plateau for

the diffusion coefficient (and thus also turbulent transport) in units of ρs.

Bifurcations in transport

Crucially, the high-ρ-regime revealed transport bifurcations (using the definition of a forking

of one steady state into two above a certain critical threshold parameter, even though the two

states can co-exist at different locations at the same time), yielding two stable density gradients

as a result of the nonlinear drift wave simulations.

These bifurcations are first and foremost associated with density corrugations - correlating to

two different (stationary) transport states, including regions of high gradients and low diffusivity

close to the flows in the electron diamagnetic drift direction (the sharply concentrated negative

flows) as well as lower gradients with heightened diffusivity around the broader positive flows.

Thus, the bifurcations are accompanied by a pronounced asymmetry in zonal flows.

This flow structure typically emerges on an order of ∼O(101) for ρ ≈ 0.6, increasing approx.

ten-fold for every doubling of ρ , explaining why earlier studies [1] with inadequate numerical

resources have not been able to find these drift wave based flows.

Interestingly, the zonal flow wavelength of drift wave based flows - differing from their ITG-

based counterparts - is not prescribed by the system but rather can be changed with little effort

by simply promoting a certain zonal flow wavelength, with no apparent countermeasures taken

by the system, at least for sufficiently large amplitudes.

Qualitative mechanism

The interaction between the drift waves and the zonal flows can be better understood by

looking at the general drift wave action invariant N of the wave packet intensity as introduced

in [2],
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∂tN⃗k =−∇x⃗

(
N⃗k · v⃗gr,⃗k

)
− ∇⃗k

(
N⃗k(x) ·

˙⃗k(⃗x,⃗k)
)

(3)

The second term describes the (local) influence of the shear flow on the wave number [5] via
˙⃗k =−∇⃗x⃗v ·⃗k0). This leads to the observation that the turbulence is capable of repulsing negative

flows, while attraction occurs in the case of positive flows. Accordingly, the flows act similarly

to forcefields, changing radial drift wave wavenumbers, thus reducing transport (and therefore

turbulence levels) in the vicinity of the negative flows.

Still, any equilibrium has to maintain the transport balance ∂xΓ(x) = 0, necessitating in-

creased gradients around the negative flows to counterbalance this drift-wave-related reduction

of transport. In the same manner, gradients around the positive flows are reduced, yielding

stepped density gradients (with increased drift mode generation rates near the flow minima be-

cause of to the steepened gradients). But since the drift waves are being repelled by the negative

flows, they exhibit Reynolds stresses which fuel the flow in return. The associated drift wave

carry-off leads not only to a deepening of the negative zonal flows but also to a broadening of

their respective positive counterparts, yielding the flow asymmetry described above.

Stress-mediated emergence of zonal flows

The actual emergence of zonal flows - no matter their secondary features - can be understood

by examining the Reynolds stresses. If a flux surface average of the potential equation (2) is

performed, followed by integrating over x, a zonal flow evolution equation

∂tv(x) = ∂x < ∂yϕ∂xϕ >=−∂x < vxvy >=: −∂xΠxy =−Π
′
xy[∂xv0]∂ 2

x (v− v0) (4)

based on the radial divergence of the Reynolds stress is reached.

The right-most side of the equation - an expansion around the equilibrium flow v0(x) - only

holds true in the limit of large flow wavelengths (when compared to the turbulence length scale)

when the stress is nothing but shearing rate dependent.

According to (4), extremal values of the shearing rate ∂xv=±u0 correspond to zero Reynolds

stress. Similarly, ±Π′
xy[±u0] > 0 is a necessary condition for flow stability while only for

Π′
xy[0]< 0 flows can be excited from random noise.

Wave-kinetic theory shows [7, 8] that zonal flow shear leads to (in-phase) turbulent stresses

mostly by changing the x-wavenumber (ky remains constant) of drift wave packets ω (⃗k,⃗r) via

∂tkx =−∂xReω =−∂xωDoppler (5)

where Πxy =< vxvy >=−< ∂yϕ∂xϕ >≈−kxky|ϕ |2.

This fulfills the above-mentioned condition for zonal flow growth, explaining the ρ > 0.5-

case. However, the difference of the flowless regime below has to be motivated separately.
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Flow transition

The zonal flow regime transition can almost solely be traced to two influence factors: A drift

wave repulsion effect (independent of ρ) and the effect of the resonant surfaces. The overall

result is a mixture of both repulsion and amplification of drift waves, where the repulsion grows

weaker for increasing values of ρ .

Due to the repulsion effect, the drift waves get accelerated up the zonal flow gradient. For

small values of ρ , the repulsion effect of the resonant surfaces increases (aided by dispersion

broadening). Thus, the drift waves located at the low-vy-side of these resonant surfaces spend

more time in the close vicinity of them, yielding increases growth times for these waves, and

thus larger overall amplitudes than those at the high-vy-side. The resulting Reynolds stress is

predominantly negative, leading to zonal flow damping.

Again, for high ρ - with the transition occurring somewhere around ρ ≈ 0.5 -, the acceleration

effect up the flow gradient dominates over the resonant surface effect, yielding predominantly

positive Reynolds stress and thus the aforementioned amplification of zonal flows.

Summary

We have worked with drift wave turbulence in a sheared-slab system capable of producing

self-consistent zonal flows. Under these conditions, we have been able to find a robust trans-

port bifurcation phenomenon in the flow-yielding high-ρ-regime, with two distinctly different

transport states correlating with a flow pattern asymmetry. A qualitative explanation of these bi-

furcations, the emergence of these flows and the transition to the flowless regime has been given,

making use of transport balance arguments, wave-kinetic theory and the drift wave acceleration

as well as resonant surface effects, respectively.
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