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Introduction

The simulation of plasma-wall interactions of fusion plasmas is extremely costly in computer

power and time – the running time for a single parameter setting is easily in the order of weeks

or months, not to mention the expenditure for parametric studies. Still there exists a small choice

of data bases with several hundred entries in different parameter regimes acquired by various

research groups. Based on these already gathered results theidea is to deploy an emulator capa-

ble of predicting dense answers in regions in data space withsufficient support. In the absence

of a concise descriptive model this formulates a regressionproblem for a non-trivial function

of unknown shape. Particularly useful for such tasks with various numbers of dimensions for

input data or target function is the Gaussian process method. Resulting function values are not

confined to a subclass in function space but constitute a dense representation of any uniformly

continuous function. The method has been appreciated much in the fields of neural networks

and machine learning [1, 2, 3]. Following in notation the book of Rasmussen & Williams [4] we

utilize the method within a probability-theoretical (Bayesian) framework. It has to be kept in

mind that the prediction gets weak whenever the data supportbecomes sparse or in the vicinity

of phase transitions and for the description thereof. Most other function parameterising methods

like e.g. neural networks or polynomial fitting tend rapidlyto unreasonable results outside of the

support region. Not so Gaussian processes, which show an uninformative, smooth behavior with

largely increased uncertainties. The thereby easily attainable identification of regions of compa-

rable high uncertainties point the way where the next simulation runs have to be accomplished

to supplement the data base.

Prediction of function values

Given n input data vectors~xi of dimensionNdim (with matrix X = (~x1,~x2, ...,~xn)) and cor-

responding target data~y = (y1, ...,yn)
T blurred by Gaussian noise of varianceσ2

d the quested

quantity is the target valuef∗ at test input vector~x∗. The later would be generated by a function

f (~x), with y = f (~x)+ ε, where〈ε〉 = 0 and〈ε2〉 = σ2
d . For being completely ignorant about a

model describing function our Ansatz is to employ the Gaussian process method, with which

any uniformly continuous function may be represented. As a statistical process it is fully de-

fined by its covariance function and called Gaussian, because any collection of random variables
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produced by this process has a Gaussian distribution.

The choice of the covariance function is decisive for the inference we want to apply. It is

the place where we incorporate all the properties which we would like our (hidden) problem

describing function to have in order to influence the result.For example, the neighbourhood

of two input data vectors~xp and~xq should be of relevance for the smoothness of the result.

This shall be expressed by a length scaleλ which represents the long range dependence of the

two vectors. For the covariance function itself we employ a Gaussian type exponent with the

negative squared value of the distance between two vectors~xp and~xq

k(~xp,~xq) = σ2
f exp

{

−
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}

. (1)

σ2
f is the signal variance and apriori set to one, if we are ignorant about this value. To avoid

lengthy formulae, we abbreviate the covariance matrix of the input data as(K)i j = k(~xi,~x j) and

the vector of covariances between test point and input data as (~k∗)i = k(~x∗,~xi).

Moreover, we consider the degree of information which the data possesses by an overall

varianceσ2
n accounting that the data are noisy and – more detailed –(σd)i for the uncertainty

estimation of a single data pointyi provided by the experimentalist. It can be shown [4] that for

givenλ , σ f andσn the probability distribution for a single function valuef∗ is

p( f∗|X ,~y,~x∗) ∝ N
(

f̄∗,var( f∗)
)

, (2)

with mean and variance

f̄∗ = ~kT
∗

(

K +σ2
n ∆

)−1
~y , (3)

var( f∗) = ~k(~x∗,~x∗)−~k
T
∗

(

K +σ2
n ∆

)−1~k∗ . (4)

∆ is a matrix with the variances~σ2
d of the input data on its diagonal and zero otherwise. If no

uncertainties of the input data are provided,∆ is set to the identity matrix.

Marginalizing the hyper-parameters

The hyper-parameters~θ = (λ ,σ f ,σn)
T determine the result of the Gaussian process method.

Since we do not know a priori, which setting is useful, we marginalize over them later on in

order to get the target values~f∗ for test inputs~X∗. Their expectation values are

〈~θ〉=
∫

d~θ ~θ p(~θ |~y)
∫

d~θ p(~θ |~y)
=

∫

d~θ ~θ p(~y|~θ)p(~θ)
∫

d~θ p(~y|~θ)p(~θ)
. (5)

Gaussian priors are employed for the hyper-parameters withmean and variance one but con-

strained to be positive,

p(θi)∼ N (1,1) ∀ θi ≥ 0 and p(θi) = 0 otherwise . (6)
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The marginal likelihoodp(~y|~θ) is obtained by

p(~y|~θ) =
∫

d~f p(~y|~f ,~θ)p(~f |~θ) . (7)

As we deal with the Gaussian process the probability functions are of Gaussian type, with the

likelihood asp(~y|~f ,~θ) ∼ N (~f ,σn∆) and the prior for~f as p(~f |~θ) ∼ N (~0,K) [4]. Thus the

integration in Eq. (7) yields

logp(~y|~θ)∼−
1
2
~yT

[

K(~θ)+σ2
n ∆

]−1
~y−

1
2

log
∣

∣

∣
K(~θ)+σ2

n ∆
∣

∣

∣
. (8)

The expectation value for the targetf∗ at test input~x∗ employs the marginal likelihood and

priors for the hyper-parameters from above

〈~f∗〉=
∫

d~θ f̄∗
p(~y|~θ)p(~θ)

∫

d~θ ′ p(~y|~θ ′)p(~θ ′)
, (9)

where the fraction constitutes the sampling density for Markov chain Monte Carlo evaluation

of the integral.

SOLPS data example

The power of the Gaussian process method is its straightforward applicability in any number

of dimensions for input data or target function. This is of special benefit in spaces of various
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Figure 1: Scrape-off layer plasma simulation

(SOLPS) data for the maximum electron den-

sity at the outboard divertor as the target func-

tion and the core densities of deuterium and he-

lium as two-dimensional input. Only data from the

SOLPS database with ELM set to false and densi-

ties for deuterium above 1019/m3 and helium above

3.1×1017/m3 are considered making a data pool of

76 entries.

(fusion plasma) input and output parameters,

if the number of source data is already suf-

ficient for reliable inferences. A particular

computationally expensive area is that of pre-

dicting the outcome of particle transport and

plasma-wall interaction in the scrape-off layer

in fusion plasma experiments. Here the theo-

retically acquired results are obtained by the

interplay of two sophisticated codes either de-

scribing the plasma solving a fluid equation

or the transport of neutrals by a Monte-Carlo

method. The run for a single parameter set-

ting is in the order of weeks, sometimes even

several months on the fastest many-core com-

puters available. A data base of 1500 param-

eter settings will be the platform we intend
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to start from to make inferences about outcomes within the ranges of the acquired data. To

keep it instructive we restrict ourselves in this paper to the two-dimensional space for the in-

put data (the core densities of deuteriumna:
ore:D:ave and heliumna:
ore:He:ave) and

one-dimensional target function (maximum electron density, outboard divertornemxap:ave).

Further restrictions on the data set caused by physics considerations (e.g. density constraints)

leave a number of 76 input data vectors. Fig. 2 depicts the outcome of the Gaussian process

method. The coloured hyper-plane is the expectation value of the target function. The uncertain-

ties of the predictions are displayed in normalized colour code and indicate (in yellow) those

parameter regions in input space where further (expensive)computations should take place to

enforce the reliability of the outcome. This provides a feasible strategy towards an autonomous

optimization algorithm.

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.004

 0.005

 0.006

 0.007

 0.008

 4

 8

 12

n
e
m
x
a
p
:
a
v
e
/
[
1
0
2
0
m
-
3
]

na:core:D:ave/[10
20
m
-3
]

na:core:He:ave/[10
20
m
-3
]

n
e
m
x
a
p
:
a
v
e
/
[
1
0
2
0
m
-
3
]

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.01
 0.02

 0.03
 0.04

 0.05
 0.06

 0.07
 0.08

 0.09
 0.1

λ
 0

 0.2

 0.4

 0.6

 0.8

 1

σn

 0

 0.2

 0.4

 0.6

 0.8

 1

p
(

λ,
σ n
|
D
)

Figure 2:Top: Predictive mean for the maximum

electron density data of Fig. 1. For violet (darker)

points one is pretty sure about the prediction. Fur-

ther experiments should take place for parameter

settings at yellow (lighter) areas. Bottom: marginal

likelihood for λ and σn. The pronounced peak en-

sures a well-behaved calculation of the expectation

value integral.
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