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Introduction

The simulation of plasma-wall interactions of fusion plass extremely costly in computer
power and time — the running time for a single parametemgeisi easily in the order of weeks
or months, not to mention the expenditure for parametridistu Still there exists a small choice
of data bases with several hundred entries in differentrparar regimes acquired by various
research groups. Based on these already gathered resutisdhis to deploy an emulator capa-
ble of predicting dense answers in regions in data spaceswftttient support. In the absence
of a concise descriptive model this formulates a regregsioblem for a non-trivial function
of unknown shape. Particularly useful for such tasks withous numbers of dimensions for
input data or target function is the Gaussian process meResliting function values are not
confined to a subclass in function space but constitute sedepsesentation of any uniformly
continuous function. The method has been appreciated nmuttteifields of neural networks
and machine learning [1, 2, 3]. Following in notation the bobRasmussen & Williams [4] we
utilize the method within a probability-theoretical (Baywyg framework. It has to be kept in
mind that the prediction gets weak whenever the data suppodmes sparse or in the vicinity
of phase transitions and for the description thereof. Mdstigfunction parameterising methods
like e.g. neural networks or polynomial fitting tend rapithyunreasonable results outside of the
support region. Not so Gaussian processes, which show afoumiative, smooth behavior with
largely increased uncertainties. The thereby easilyrattde identification of regions of compa-
rable high uncertainties point the way where the next sitrarlauns have to be accomplished

to supplement the data base.

Prediction of function values

Given n input data vectorg; of dimensionNgim (with matrix X = (Xi,%p, ...,%,)) and cor-
responding target daga= (yi,...,yn)" blurred by Gaussian noise of variana§ the quested
guantity is the target valu& at test input vectox,. The later would be generated by a function
f(X), with y = f(X) + &, where(g) = 0 and(€?) = g2. For being completely ignorant about a
model describing function our Ansatz is to employ the Gausgirocess method, with which
any uniformly continuous function may be represented. Agatissical process it is fully de-

fined by its covariance function and called Gaussian, becag collection of random variables
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produced by this process has a Gaussian distribution.

The choice of the covariance function is decisive for therahce we want to apply. It is
the place where we incorporate all the properties which walavbke our (hidden) problem
describing function to have in order to influence the redudt. example, the neighbourhood
of two input data vectorg, andX, should be of relevance for the smoothness of the result.
This shall be expressed by a length scalehich represents the long range dependence of the
two vectors. For the covariance function itself we employaussian type exponent with the

negative squared value of the distance between two vei@sdx
2
Xp — Xq } ) (1)

A
ofz Is the signal variance and apriori set to one, if we are igmoa®out this value. To avoid

1
K(%p,Xq) = 07 exp{ -5

lengthy formulae, we abbreviate the covariance matrix efitiput data agK)ij = k(%;,X;) and
the vector of covariances between test point and input dafla g = k(X.,%).

Moreover, we consider the degree of information which th& gessesses by an overall
varianceg? accounting that the data are noisy and — more detailga}; for the uncertainty
estimation of a single data poiptprovided by the experimentalist. It can be shown [4] that for
givenA, ;s anda, the probability distribution for a single function valdgis

p(f|X.¥.%) O (f.,var(f.)) | (2)

with mean and variance
. = K(K+a2) 'y | (3)
var(f,) = K(%,%)-K (K+02) 'k . (4)

A is a matrix with the varianceég of the input data on its diagonal and zero otherwise. If no
uncertainties of the input data are providAds set to the identity matrix.
Marginalizing the hyper-parameters
The hyper—parameteé: (A, 0%,0n)" determine the result of the Gaussian process method.
Since we do not know a priori, which setting is useful, we nraltize over them later on in
order to get the target valuds for test inputsX,. Their expectation values are
(&) _ 198 Gp(8ly) _ [ d8 8p(y6)p(6)

[dé p(Bly) [ d6 p(yI6)p(6)
Gaussian priors are employed for the hyper-parametersmaidin and variance one but con-

(5)

strained to be positive,

p(6)~ A4 (1,1) V 6 >0 and p(6)=0 otherwise . (6)
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The marginal likelihoodh(y|6) is obtained by

p16) = [ df pGIT.O)p(TIE) - ™

As we deal with the Gaussian process the probability funstare of Gaussian type, with the
likelihood asp(y|f,8) ~ .4 (f,0nA) and the prior forf asp(f|6) ~ .#/(0,K) [4]. Thus the
integration in Eq. (7) yields

109p(516) ~ 35" [K(8) + oBa] "y Slo0|K(8) + oZa| ®

The expectation value for the targét at test inputX, employs the marginal likelihood and

priors for the hyper-parameters from above

v [dé f. qp(V|é)g(5)ﬁ , 9
) / Jdo’ p(y16")p(8) ©)

where the fraction constitutes the sampling density forkdarchain Monte Carlo evaluation

of the integral.

SOL PS data example
The power of the Gaussian process method is its straighafoirapplicability in any number

of dimensions for input data or target function. This is oé&pl benefit in spaces of various

(fusion plasma) input and output parameters,

if the number of source data is already suf.

ficient for reliable inferences. A particular 5 -

computationally expensive area is that of pre=

dicting the outcome of particle transport and
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plasma-wall interaction in the scrape-off layer ...c.c.ic..ve o7 oo 025
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in fusion plasma experiments. Here the theo-

retically acquired results are obtained by tiFgure 1: Scrape-off layer plasma simulation
interplay of two sophisticated codes either d¢SOLPS) data for the maximum electron den-
scribing the plasma solving a fluid equatiosity at the outboard divertor as the target func-
or the transport of neutrals by a Monte-Carléon and the core densities of deuterium and he-

method. The run for a single parameter sétm as two-dimensional input. Only data from the
oipLPS database with ELM set to false and densi-

pﬁz_s for deuterium above 10*°/m? and helium above

ting is in the order of weeks, sometimes ev

several months on the fastest many-core co

7 . .
puters available. A data base of 1500 parar:?,’i}><101 /e are considered meking a data pool of

. . . 76 entries.
eter settings will be the platform we intend
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to start from to make inferences about outcomes within timgea of the acquired data. To
keep it instructive we restrict ourselves in this paper ® ttho-dimensional space for the in-
put data (the core densities of deuteriuat core:D:ave and heliumna:core:He:ave) and
one-dimensional target function (maximum electron dgnsiitboard divertohemxap :ave).
Further restrictions on the data set caused by physicsaenasions (e.g. density constraints)
leave a number of 76 input data vectors. Fig. 2 depicts theoout of the Gaussian process
method. The coloured hyper-plane is the expectation vdltledarget function. The uncertain-
ties of the predictions are displayed in normalized coladgecand indicate (in yellow) those
parameter regions in input space where further (expensamputations should take place to
enforce the reliability of the outcome. This provides a fielesstrategy towards an autonomous

optimization algorithm.

Acknowledgment

12

e
i
£

o
5

viding the SOLPS-simulation data (partly) be-% “

We would like to thank D. Coster for pro-

©

fore publication. This project has received fund-

ing from the Euratom research and training:

programme 2014'2018 na:core:He:ave/[lOZO.m%] 0.004

References

D. Barber, Bayesan Reasoning and Ma-

p(A,0,1D)

chine Learning, Cambridge University Press,
(2012).
C. Bishop, Neural Networks for Pattern

Recognition, Oxford University Press,
(1996).
D. MacKay, Information Theory, Inference, Figure 2:Top: Predictive mean for the maximum

and Learning Algorithms, Cambridge Univer- electron density data of Fig. 1. For violet (darker)
sity Press, (2003). points one is pretty sure about the prediction. Fur-

- ) ther experiments should take place for parameter
C. Rasmussen and C. William$aussian P P P

) ] settings at yellow (lighter) areas. Bottom: marginal
Processes for Machine Learning, MIT Press,
(2006) likelihood for A and oy,. The pronounced peak en-

sures a well-behaved calculation of the expectation

value integral.



