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Abstract
Many processes in plasma physics are inherently complex and highly nonlinear. Typically their
behaviour is difficult to interpret with theoretical models based on first principles. To perform
high-quality inferences, these processes have to be modelled starting directly from the
experimental data. In this contribution we study and analyse the capabilities of Symbolic
Regression via Genetic Programming as a tool for advanced data mining in Nuclear Fusion to
derive Empirical Models. Whereas traditional linear and non-linear regression techniques
simply try to find the best parameters of predefined model by fitting the available data,
Symbolic Regression via Genetic Programming searches for the Best Unconstrained Empirical
Model Structure. This implies deriving the significant variables, the functional form of the
model and its parameters. A set of synthetic problems are used to assess some important
capabilities of SR tools: over-fitting avoidance, extrapolation properties, identification of
model constants, scalability to higher-dimensional problems and capacity to handle noisy data.
As an example of application to Nuclear Fusion research, the method has been applied to the

ITPA database of the energy confinement time of Tokamak plasmas in H mode.

1. Algorithm for Symbolic Regression

Symbolic Regression (SR) via genetic programming (GP) takes inspiration from the biological
criteria of “natural selection” and “evolution”, since the aim of an algorithm implemented for
SR is to provide the best “individual” among many for solving a specific problem. For
applications in physics, this individual is typically the function best fitting the data. Whereas
traditional linear and non-linear regression techniques simply try to find the best parameters of
predefined model by fitting the available data, Symbolic Regression searches for the Best
Unconstrained Empirical Model Structure (BUEMS)[1,2,3]. The algorithm implemented

includes modified parts of a free open source program called GPTIPS[4].
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Starting from an initial collection of models (population), each consisting of numbers or
variables or function (nodes) and represented by a linear combination of tree structures well
defined in the graph theory ( Ymodel = 2. C; ti» Where ¢; are the constants of each tree t;), their
fitness to the data is computed using a criterion. We chose to use the following form of the AIC
estimator, AIC = 2 -k + n-In(RMSE /n); where RMSE is the Root Mean Square Error, k
is the total number of nodes of the model and n the number entries provided. Once ranked, the
population is used to build a new one and the process continues until a convergence criterion is
satisfied [1]. One criterion among those implemented requires the best individual not to change
before reaching a fixed percentage of a controlled parameter called “maturity”. If the fitness of
the best model does not vary in double precision, the “maturity” increases of a fixed value
(FPVI). In a post run phase, the best models, the second and third elements of each iteration are
used to provide a possible solution. using the Pareto Frontier (PF) where the number of nodes
and the fitness of each model are considered for their ranking. The PF allows identifying, for
each subgroup of models with the same number of nodes, the individual best fitting to data.
Moreover, models on the PF are also classified using a Bayesian criterion (BIC) parameterized

as BIC =n- ln(a(ze)) + k - In(n), where € are the residuals and the other symbols defines the

same quantities of the AIC. Two methodologies of analysis have been developed. The first one,
that has been called “population convergence”, consists of launching more runs, fixing for each
the same maximum number of trees and the FPVI value, while the population parameter
differs..On the other hand, the methodology consisting of launching more runs, each with a
different maximum number of trees that can be used, but all with the same population and FPVI
value, has been called “multitree convergence”. In both cases the results of different runs are
compared and the BUEMS belonging to the saturation part of the PF and more frequently found
is selected.

Dealing with the paper, in Section 2 the classical Koza and Nguyen-6 examples and the three
Maclaurin expansions have been solved using the “population convergence” methodology;
while in Section 3 an application to the scaling laws for the scaling of the confinement time in
Tokamak plasmas is provided using the “multitree convergence”. Finally in Section 4

conclusions are drawn.

2. Benchmark applications

The Koza-1[5] function (y = Zlexi), as been chosen as a test for the polynomial class of

models and the Nguyens-6 [5] one (y = sin(x) + sin(x + x2)).for the dependence of the
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Table II. Population convergence.For the

trigonometric function on polynomials arguments. 0
Koza-1 function (K) and the Nguyens-6 (N)

The functions allowed [5] are F:{+,-,*,/,sin, cos, In,

one.

exp}, no constants have been used and the variable Pop | RMSE Time Func
-15 :
range is .U[—1,1; 20] where U stands for uniform 250 | 10 16mm, 42s K
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3. Scaling of the confinement time in non % -2 0 2 4

power law form Figure 1.Analytic data and expansions.

The extrapolation of the energy confinement time to the next generation of devices has been
investigated both theoretically and experimentally for several years. Dimensional or
dimensionless scaling laws have been proposed, but the most widely accepted in the
community are in power law (PWL) form. PWL can be unsatisfactory for several reasons, such
as. no saturation effects (even when variables grow to infinity or go to zero), or monotonic
behaviour, or overestimation of the relevance of the variables with the longest tails. To
investigate this assumptions, the SR approach presented in the first section has been applied to
the ITPA database DB3v13. In line with the previous literature[6], the same independent
quantities have been considered to be good candidate regressors in the present work. One of the
best functional forms for the confinement time given by SR, in terms of dimensional quantities,
is reported in eq(1). Also the power laws typically used as reference [6] by the community are
reported: IPB98(y,2) (PL1) in eq.(2) and EIV (PL2) in eq.(2).
3
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0.1003:339
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Table II. Comparison of eq.(1,2,3). After the non linear
fit, AIC has been recomputed using the RSS instead of
the RMSE; the complexity (k) of the model has been
considered as the number of parameters (p) plus one, so
k=p+1 both for AIC and BIC. The Kullback Leibler
divergenge (KLD) have been computed in a +606 range
from the mean value of the distribution of the original

The most important aspect of the
BUEMS in eq.(4) in the non power law
(NPL) functional form, is the presence of

a squashing term in the density. The

data (7). physical interpretation involves the
NPL PL1 PL2 analysis of the behaviour of the smaller
k 9 10 10
AIC -19610.81 | -19416.86 | -19084.36 | devices for which the squashing term
BIC | -19556.55 | -19362.86 | -19203.68 | i iroqduces more flexibility in fitting the
MSE [s“] | 1.753- 103 | 1.866- 10 2.077- 10
KLD 0.0255 0.0337 0.0802 region of the smaller densities, at the

same time allowing the use of less
favourable exponents for the power law part of the scaling. The superior properties of the NPL
are reported in Table II. Eq.(4) predicts a confinement time at ITER of 2.83331 s, while other

models of similar behavior predict even a more pessimistic extrapolation.

4. Conclusions

The results obtained using the genetic algorithm implemented, show how it can be used to find
hidden functions in the form of McLaurin expansions as well as BUEMS problems. A major
role is played by the combined use of the information criterion AIC and of the statistical
estimator BIC which allow finding a good compromise between limited complexity and good
data fitting. Finally the application of the technique to the ITPA database of the energy

confinement time shows the relevance of relaxing the assumption of power law scalings.
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