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Abstract 

Many processes in plasma physics are inherently complex and highly nonlinear. Typically their 

behaviour is difficult to interpret with theoretical models based on first principles. To perform 

high-quality inferences, these processes have to be modelled starting directly from the 

experimental data. In this contribution we study and analyse the capabilities of Symbolic 

Regression via Genetic Programming as a tool for advanced data mining in Nuclear Fusion to 

derive Empirical Models. Whereas traditional linear and non-linear regression techniques 

simply try to find the best parameters of predefined model by fitting the available data, 

Symbolic Regression via Genetic Programming searches for the Best Unconstrained Empirical 

Model Structure. This implies deriving the significant variables, the functional form of the 

model and its parameters. A set of synthetic problems are used to assess some important 

capabilities of SR tools: over-fitting avoidance, extrapolation properties, identification of 

model constants, scalability to higher-dimensional problems and capacity to handle noisy data. 

As an example of application to Nuclear Fusion research, the method has been applied to the 

ITPA database of the energy confinement time of Tokamak plasmas in H mode.  

1. Algorithm for Symbolic Regression 

Symbolic Regression (SR) via genetic programming (GP) takes inspiration from the biological 

criteria of “natural selection” and “evolution”, since the aim of an algorithm implemented for 

SR is to provide the best “individual” among many for solving a specific problem. For 

applications in physics, this individual is typically the function best fitting the data. Whereas 

traditional linear and non-linear regression techniques simply try to find the best parameters of 

predefined model by fitting the available data, Symbolic Regression searches for the Best 

Unconstrained Empirical Model Structure (BUEMS)[1,2,3]. The algorithm implemented 

includes modified parts of a free open source program called GPTIPS[4]. 
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Starting from an initial collection of models (population), each consisting of numbers or 

variables or function (nodes) and represented by a linear combination of tree structures well 

defined in the graph theory ( ������ = ∑ ! "!, where  ! are the constants of each tree "!), their 

fitness to the data is computed using a criterion. We chose to use the following form of the AIC 

estimator, #$% = 2 ⋅ ( + * ⋅ ln,-./0/*2; where -./0 is the Root Mean Square Error, ( 

is the total number of nodes of the model and * the number entries provided. Once ranked, the 

population is used to build a new one and the process continues until a convergence criterion is 

satisfied [1]. One criterion among those implemented requires the best individual not to change 

before reaching a fixed percentage of a controlled parameter called “maturity”. If the fitness of 

the best model does not vary in double precision, the “maturity” increases of a fixed value 

(FPVI). In a post run phase, the best models, the second and third elements of each iteration are 

used to provide a possible solution. using the Pareto Frontier (PF) where the number of nodes 

and the fitness of each model are considered for their ranking. The PF allows identifying, for 

each subgroup of models with the same number of nodes, the individual best fitting to data. 

Moreover, models on the PF are also classified using a Bayesian criterion (BIC) parameterized 

as 3$% = * ⋅ ln45,62
� 7 + ( ⋅ ln,*2, where 8 are the residuals and the other symbols defines the 

same quantities of the AIC. Two methodologies of analysis have been developed. The first one, 

that has been called “population convergence”, consists of launching more runs, fixing for each 

the same maximum number of trees and the FPVI value, while the population parameter 

differs..On the other hand, the methodology consisting of launching more runs, each with a 

different maximum number of trees that can be used, but all with the same population and FPVI 

value, has been called “multitree convergence”. In both cases the results of different runs are 

compared and the BUEMS belonging to the saturation part of the PF and more frequently found 

is selected. 

Dealing with the paper, in Section 2 the classical Koza and Nguyen-6 examples and the three 

Maclaurin expansions have been solved using the “population convergence” methodology; 

while in Section 3 an application to the scaling laws for the scaling of the confinement time in 

Tokamak plasmas is provided using the “multitree convergence”. Finally in Section 4 

conclusions are drawn. 

2. Benchmark applications 

The Koza-1[5] function 4� = ∑ 9!:
!;	 7, as been chosen as a test for the polynomial class of 

models and the Nguyens-6 [5] one 4� = sin,92 + sin,9 + 9�27,for the dependence of the 

41st EPS Conference on Plasma Physics P2.029



 

trigonometric function on polynomials

The functions allowed [5] are F:{+,

exp}, no constants have been used 

range is .<=>1,1; 20B where U stands for uniform 

random sample between =>1

points.The stopping RMSE value

to 10CD. Results are reported in Table 

Another example of application of our algorithm 

consists of finding a Maclaurin expansion of 

three functions (sin(x), cos(x),

case the algorithm found the expansions up to the 

order which leads to an RMSE value under the 

tolerance criterion of 10C� . 

the same conditions of the previous te

been chosen, except for the fact 

runs over <=>E, E; 20B

foundamental mathematical operators have been 

used. The excellent behaviour of the expansion 

obtained have been graphically 

3. Scaling of the confinement time in non 

power law form 

The extrapolation of the energy confinement time to the next generation of devices has been 

investigated both theoretically and experimentally for several 

dimensionless scaling laws have been 

community are in power law (PWL

as. no saturation effects (even when variables grow to infinity or 

behaviour, or overestimation 

investigate this assumptions, the 

the ITPA database DB3v13. 

quantities have been considered 

best functional forms for the confinement time given by 

is reported in eq(1). Also the power laws typically used as reference

reported: IPB98(y,2) (PL1) in eq.

3 

polynomials arguments. 

are F:{+,-,*,/,sin, cos, ln, 

have been used and the variable 

U stands for uniform 

1,1B  having twenty 

value has been fixed 

are reported in Table I. 

other example of application of our algorithm 

claurin expansion of 

cos(x), exp(x)). In this 

the expansions up to the 

order which leads to an RMSE value under the 

. For completeness, 

previous tests have 

for the fact that the variable 

B  and only the 

foundamental mathematical operators have been 

excellent behaviour of the expansion 

graphically plotted in Figure1  

ment time in non 

The extrapolation of the energy confinement time to the next generation of devices has been 

investigated both theoretically and experimentally for several years

scaling laws have been proposed, but the most widely accepted in 

PWL) form. PWL can be unsatisfactory for several reasons

even when variables grow to infinity or go to zero

 of the relevance of the variables with the longest tails

, the SR approach presented in the first section 

 In line with the previous literature[6], the 

quantities have been considered to be good candidate regressors in the present work

for the confinement time given by SR, in terms of dimensional quantities, 

. Also the power laws typically used as reference [6] by the community

in eq.(2) and EIV (PL2) in eq.(2). 

Table II. Population convergence.For the 

Koza-1 function (K) and the 

one. 
 

Pop  RMSE  

250  10C	D 16min, 42s 

500  10C	D 7min,21s 

750  10C	: 

1000  10C	F 1min, 49s 

250  10C	D 

500  10C	D 

750  10C	� 1min,21s 

1000  10C	� 

 

Figure 1.Analytic data and expansions
 

The extrapolation of the energy confinement time to the next generation of devices has been 

years. Dimensional or 

he most widely accepted in the 

an be unsatisfactory for several reasons, such 

to zero), or monotonic 

the longest tails. To 

 has been applied to 

, the same independent 

regressors in the present work. One of the 

, in terms of dimensional quantities, 

by the community are 

Table II. Population convergence.For the 

1 function (K) and the Nguyens-6 (N) 

Time  Func  

16min, 42s  K  

7min,21s  K  

21s  K  

1min, 49s  K  

22s  N  

41s  N  

1min,21s  N  

51s  N  

 
1.Analytic data and expansions. 
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 The most important aspect of the 

BUEMS in eq.(4) in the non power law 

(NPL) functional form, is the presence of 

a squashing  term in the density. The 

physical interpretation involves the 

analysis of the behaviour of the smaller 

devices for which the squashing term 

introduces more flexibility in fitting the 

region of the smaller densities, at the 

same time allowing the use of less 

favourable exponents for the power law part of the scaling. The superior properties of the NPL 

are reported in Table II. Eq.(4) predicts a confinement time at ITER of 2.83�.:�	
�.�	 d, while other 

models of similar behavior predict even a more pessimistic extrapolation. 

4. Conclusions 

The results obtained using the genetic algorithm implemented, show how it can be used to find 

hidden functions in the form of McLaurin expansions as well as BUEMS problems. A major 

role is played by the combined use of the information criterion AIC and of the statistical 

estimator BIC which allow finding a good compromise between limited complexity and good 

data fitting. Finally the application of the technique to the ITPA database of the energy 

confinement time shows the relevance of relaxing the assumption of power law scalings. 
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Table II. Comparison of eq.(1,2,3). After the non linear 

fit, AIC has been recomputed using the RSS instead of 

the RMSE; the complexity (k) of the model has been 

considered as the number of parameters (p) plus one, so 

k=p+1 both for AIC and BIC. The Kullback Leibler 

divergenge (KLD) have been computed in a ±fg range 

from the mean value of the distribution of the original 

data ,h2. 
 

 NPL PL1 PL2 

k 9 10 10 
AIC -19610.81 -19416.86 -19084.36 
BIC -19556.55 -19362.86 -19203.68 

MSE	=d2B 1.753 ⋅ 10� 1.866⋅ 10� 2.077⋅ 10� 

KLD 0.0255 0.0337 0.0802 
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