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Abstract

The ideal linear MHD stability of general 3D magnetic configurations is thought to
be important for topics such as the understanding and control of Edge Localized Modes
(elms), the limit of the size of the pedestal that governs the high confinement H-mode, etc.
Of these, the most important instabilities are assumed to be the so-called intermediate to
high n peeling-ballooning modes, which combine high n ballooning modes with a lower
n peeling nature. In this work, a first, general 3D theory is derived, with the result being
a set of coupled second order ordinary differential equations, with appropriate boundary
conditions, that reflect the minimization of the total energy of a plasma-vacuum system.
This theory can be used to investigate 3D effects on (edge) plasma stability in tokamaks
where the axisymmetry is broken by a toroidal ripple, a tritium breeder module, etc, as well
as the stability of full 3D configurations such as stellerators.

Introduction
Linear ideal MHD stability can be a rather idealized approximation of reality, but it can also

be surprisingly relevant, as the instabilities due to MHD activity often set important limitations
on the performance of magnetic configurations. Therefore, it has been extensively used in the
past and often gives a surprisingly good approximation of reality.

Of interest has been the treatment of so-called intermediate to high n peeling-ballooning
modes in general 3D configurations. High n refers to a mode that is highly localized around
a specific magnetic field line, which is the case for ballooning modes, for example. Peeling
modes, on the other hand, can be thought of as an edge-localized version [5] of an interchange
mode, and they are typically less localized poloidally and toroidally (though indeed radially),
as indicated by the term intermediate n mode.

Coupled peeling-ballooning modes have been identified as probable protagonists in the be-
havior of Edge Localized Modes (elms), as well as the processes that limit the size of the
pedestal that governs the high confinement H-mode [2, 8]. It is therefore very important that
they are thoroughly understood and that they can be modelled accurately.

A missing gap in this theoretical description has been the fast and reliable treatment in general
3D configurations. On the one hand a numerical code, called elite, exists, which is based on
theory developed originally by Connor [1] for ballooning modes and later extended to include
peeling modes as well, by retaining terms of higher order in a high n ordering scheme [2].
The main limitation is the fact that elite works in 2D. For 3D there are various options, such
as mishka [6] and kinx [3], which are indeed successful at describing various phenomena, but
their downside is that they can be slower. To patch this hole, the authors are working on a
new numerical code called pb3d (peeling ballooning in 3d), which retains the high n ordering,
including higher orders, just like elite, but applying to 3D configurations as well as 2D ones.
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The first step in this work was the derivation of a suitable stability theory built on ideal linear
MHD [7]. A discussion concerning the 3D theory will be the topic of the next section. Currently,
work is being done on the new numerical code pb3d and a preliminary version is nearly ready.
Some numerical issues will be discussed in the following section. Finally, in the near future,
this code will first be benchmarked with other codes, and then compared with experiments.

Ideal linear 3D MHD stability
In ideal linear MHD stability of a plasma-vacuum system, the plasma energy is perturbed by

ξξξ and the vacuum magnetic field by Q. The stationary values of the Rayleigh quotient Λ are
the Eigenvalues of the system and their signs determine whether this perturbation is stable or
unstable:
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where Wp, Ws and Wv are the contribution to the potential energy due to the plasma, the plasma-
vacuum surface and the vacuum [4].

The three components of the perturbed potential energy can be calculated and the result is
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where all the symbols have their usual meaning. Valid perturbations have to satisfy the essential
boundary conditions: 

ξξξ regular (on V)

n · ∇× (ξξξ×Bv) = n ·Qv (on S)

n ·Qv = 0 (on exterior wall Wv)

. (3)

To proceed, a flux coordinate system (α,ψ,θ) with α= ζ−qθ the field line label, ψ the poloidal
flux and θ the magnetic coordinate, is introduced and the plasma perturbation is decomposed in
three perpendicular components:

ξξξ = X
∇ψ

|∇ψ|2
+ U
∇ψ×B

B2 + WB . (4)

and similarly for the vacuum magnetic perturbation. The perturbations are subsequently de-
composed in Fourier Modes in the coordinates (α,θ) with mode numbers n and m, both � 1.
However, since high n modes are considered, these modes are required to follow the field lines
to first order, which is reflected in the fact that the modes only couple in the magnetic coordinate
θ and not in the field line label α. This is the 3D high n equivalent of the fact that in 2D the
toroidal coordinate is negligible. Note that θ is not the poloidal coordinate, but the coordinate
along the magnetic field, which means that the equilibrium is not reduced to a toroidal cross
section. In other words, the equilibrium information is preserved by the ability to move along
the magnetic field lines (which are expected to cover the complete flux surface).
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By then Euler minimizing first the parallel component Z, sound waves are eliminated, which
are represented by the term proportional to γ. Secondly, the geodesic component U is Euler
minimized by avoiding magnetic field line bending. After some calculation, this resuls in an
expression relating Um to Xm in the form of a linear operator:

Um (Xm) =
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n

Θθ +
i
n
∂

∂ψ

)
Xm +

i
n
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with Θi the ratio of two contravariant metric factors: Θi =
gψ,i
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)
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(6)
with J the Jacobian and Bi the covariant components of the magnetic field.

The minimized geodesic component can now be inserted back into the expression for the
plasma potential energy, as well as the kinetic energy. Secondly, for high n modes, it can be
shown that the minimal potential energy due to the plasma-vacuum interface is zero, to avoid
large stabilization. The vacuum potential energy, lastly, can be reduced to a term that depends
only on the normal component of the plasma perturbation at the interface ξn, as shown also in
equation 1.

The result of the minimization, δWp
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and similarly for K. The coefficients P̃V
i
k,m are Hermitian and listed in [7] and the direction of

the arrows indicate whether the derivatives work on the left or on the right.
By means of Euler minimization with respect to the modes X∗k of the vector (X∗), a system

of M ordinary, second order differential equations is obtained. The boundary terms resulting
from this minimization, as well as the terms representing the vacuum potential energy, yield
boundary conditions at the plasma-vacuum interface. The problem is then completely described
by considering external modes that vanish in the interior of the plasma.

This system of equations has to be solved, yielding the eigenvalue Λ and the eigenvectors that
describe the stability of the system. Alternatively, by introducing the coordinate transformation
θ3D = 1

q

∫ χ2D J2DBζ2D
R2 , the results from [8] can be obtained directly, where the subscript 2D in-

dicates an axisymmetric quantity. This represents an alternative derivation that is much easier
than the original one [1]. The numerical code elite is based directly on this theory.

The pb3d code: numerical aspects
A numerical code, called pb3d (peeling - ballooning in 3d) is currently under development.

This code will solve the system of equations described in the previous section, making use of
finite differences in the radial direction.
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The code is written in fortran, with performance in mind. One of the features supporting this
is the usage of the vmec system of coordinates, in which the coordinates are deformed in such a
way that the size of a Fourier base in these coordinates, describing the equilibrium, is as small
as possible. The downside is the fact that the vmec coordinate system is generally not straight.

Furthermore, pb3d will be parallelized. This will enable the usage of the code in parameter
studies so that the domains in which more accurate, but also slower codes should be used, can
be determined more easily.

Conclusions
To fill a gap in the current understanding of 3D effects in magnetic configurations, which are

important for many phenomena such as the suppression of elms and the limiting behavior of the
pedestal in the H-mode, a new theory has been developed. This theory is based on linear ideal
MHD and constitutes a coupled system of Hermitian, second order linear differential equations
that have to be solved to determine the stability of a 3D plasma-vacuum system.

A new code, pb3d, is under development, which aims to accurately and quickly solve this
system of equations so that it can be used for parameter studies, indicating the revant parameter
regions where more accurate, but slower codes are necessary.

This will improve the understanding of 3D effects which are important for the next genera-
tions of magnetic devices.
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