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Introduction

The use of particle tracers is very helpful in trying to understand turbulence-induced transport

in magnetically confined plasmas. We apply the continuous random walk (CTRW) approach

[1] to the analysis of the tracer trajectories. In doing so, we decompose the tracer trajectories

in radial flights and use different criteria in order to classify those flights. Some correspond to

trappings of the particle and some jumps between trappings. The next step is to understand the

probability distribution of the trapping times of the tracers and of the flights between trappings.

Here, we study the distribution of the trapping times of the tracers. To interpret the results

from the tracer calculations we start first with a resistive pressure-gradient-driven turbulence

model in cylindrical geometry in which the basic picture of the instabilities and transport is

simpler, but certainly not easy to understand.

In a previous paper [2], we have done a topological analysis of the flow structures for the same

dynamical problem considered here. Now, we can relate these topological structures to the type

of tracer trappings observed in the present calculations. Using the results of the topological

analysis, we are able to build a probabilistic model to interpret the tracer results.

Topological analysis of the flow structures

We study the pressure-gradient-driven turbulence in cylindrical geometry by means of a re-

duced set of resistive MHD equations in the electrostatic limit. The geometry is that of a peri-

odic cylinder, with minor radius a and length L0 = 2πR0. We use a coordinate system (r,θ ,ζ ),

in which r is the radius of the cylindrical surface, θ is the poloidal angle, and ζ = z/R0, where

z is the coordinate along the axis of the cylinder, so ζ is an effective toroidal angle when the

cylinder is bent in a torus. The E×B velocity is written in terms of the electrostatic potential:

V⊥ =−∇⊥Φ×z/B0. The model consists of two equations, the perpendicular momentum equa-

tion for the electrostatic potential evolution, and the equation of state for the pressure evolution.

Dissipative terms are included in both equations. The plasma considered here is a model of a

configuration of the Large Helical Device (LHD) [3]. Details of the equations, configuration,

numerical methods, and main parameters can be found in Ref. [2].
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All the information on the turbulence flow is contained in the electrostatic potential Φ. We

define a cubical space Nr×Nθ ×Nζ covering the cylinder. At a fixed time t, we define a flow

structure as the set of points such that Φ(r,θ ,ζ , t) ≥ Φ0 max(Φ), for a suitable constant Φ0,

with max(Φ) being the maximum value Φ at time t. Therefore, Φ0 gives a fraction of the

maximum value of Φ and 0≤Φ0 ≤ 1. The main finding of Ref. [2] was that the structure of the

flow is filamentary. The filaments are vortices that are linked to the rational surfaces. Some of

these filamentary vortices close on themselves forming toroidal knots. These are the cycles and

they are normally located at the lowest rational surfaces. At the other low rational surfaces the

filaments are broken and we characterise them by their length. Probably the most remarkable

property that we have observed is the lognormal character of the distribution of filament lengths

[2].

Relation between flow topology and tracer transport

To study the transport properties, we investigate the time evolution of pseudo-particle tracers.

The equation of motion for the tracers is

dr
dt

=−∇⊥Φ× z
B0

+V0b,

where V0 is a constant velocity along the field lines. As the tracer particles move by the turbulent

flow, we consider the particles being trapped for certain periods of times in the flow filaments

and then taking steps or flights between trapping times. This way of looking at the tracer particle

motion allows us to connect with the CTRW transport approach.

To calculate the probability distribution of the trapping times and the flights we have to first

define both of them in the context of our numerical calculations. Here, we are interested in the

radial transport and for this reason we consider flights only in the radial direction. We say that

a particle tracer performs a flight while it moves on a trajectory keeping the same sign of the

radial component of the velocity. Then, we consider a tracer to be trapped if successive radial

flights vary less than a given percentage. Normally a value of 30% has been used.

For the analysis of the flow structures [2], we considered cylindrical layers with constant

radius. In the (θ ,ζ )-plane, the filaments cross the area with the slope corresponding to q(r). To

visualise the topological structures and calculate their widths, we do first a transformation of the

poloidal angle θ to θ +ζ/q. With this transformation, the filaments go in the vertical direction.

Then, we project the structures to the ζ = 0 plane. Fig. 1 shows the resulting projection of flow

structures in the (r,θ )-plane. Also it is shown (in blue) the trajectory of a tracer. The tracer is

most of the time trapped at different structures and occasionally jumps between them.
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Figure 1: Projection of flow structures. Points

for which Φ≥ 0.1max(Φ) are in red and points

for which Φ ≤ −0.1max(Φ) are in green. The

trajectory of a tracer is shown in blue.

We have studied the evolution of tracers

for three different values of V0. The initial

tracer positions are randomly distributed in

the cylinder, and we follow the trajectory of

105 tracers till the end of the calculation and

accumulate the data. This data is analysed to

identify the portion of the trajectories that the

tracers remain trapped.

For each case, we have two sets of data on

the trapping. There is one set for the trappings

that do not reach the end of the calculation,

that is, a set of data in which the trapping

phase is completed. There is another set in

which the tracers were still trapped the last

step. In this last set we have tracers that are

trapped practically during the full length of

the calculation.
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Figure 2: PDF of the trapping times multi-

plied by V0 for the three cases studied.

We have calculated the probability distribu-

tion function (PDF) of the trapping times for the

different cases studied. If we re-scale the trap-

ping times by multiplying by V0, we have prac-

tically the same dependence for the tail of the

PDF, as can be seen in Fig. 2. This indicates

that most of the trappings that are completed dur-

ing the calculation correspond to tracers trapped

on broken filaments, including possible multiple

trappings (see Fig. 1). The PDF is then a function

of the filament length (product of V0 by the trap-

ping time), and has a lognormal character, like

the distribution of filament lengths. The sharp in-

crease at the end of the distribution corresponds

to the tracers which trapping period has not fin-

ished by the end of the calculation.
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Figure 3: PDF of the averaged radial flight

during trappings for the three cases studied,

and of the radial width of the flow structures.

Since the tracers are trapped on the flow struc-

tures, one expects that the radial flights of the

tracers during trappings will be related with the

radial width of the flow structures. Fig. 3 shows

that the distribution of the radial width of the

flow structures describes very well the distribu-

tion of the averaged radial flight of the tracers

during a trapping period.

Probabilistic model for the trapping of tracers

We have developed a model in the line of the

CTRW approach for simulating the trapping of

tracers.Walks are defined along resonant field

lines. For each walk, we take a step δ r, which

is the radial flight of the tracer when trapped.

For each tracer, the initial radial and poloidal locations are chosen randomly. For the radial

step size, δ r, we use the distribution of the radial width of the flow structures. For the filaments,

the main parameter is the lenght of the filament along the tracer moves. In this case, we use the

lognormal distribution of filament lengths.

The model has two parameters: 1) p0, the probability that a tracer on a filament jumps to

another, and 2) p1, the probability of a tracer to detrap in a given step.

By choosing suitable paramaters p0 and p1 we have a reasonable description of the distribu-

tion of trapping times and number of flights per trapping.

Conclusions

We have studied the trapping of tracers in a turbulent field in cylindrical geometry.The trap-

ping of tracers, which do not remain trapped at the end of the calculation, seems to be due to

trapping on finite size filaments including multiple possible trappings. The cycles seem to play

a role for the tracers that remain trapped very large times, larger than the calculation time.
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