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Introduction

The use of particle tracers is very helpful in trying to understand turbulence-induced transport
in magnetically confined plasmas. We apply the continuous random walk (CTRW) approach
[1] to the analysis of the tracer trajectories. In doing so, we decompose the tracer trajectories
in radial flights and use different criteria in order to classify those flights. Some correspond to
trappings of the particle and some jumps between trappings. The next step is to understand the
probability distribution of the trapping times of the tracers and of the flights between trappings.

Here, we study the distribution of the trapping times of the tracers. To interpret the results
from the tracer calculations we start first with a resistive pressure-gradient-driven turbulence
model in cylindrical geometry in which the basic picture of the instabilities and transport is
simpler, but certainly not easy to understand.

In a previous paper [2], we have done a topological analysis of the flow structures for the same
dynamical problem considered here. Now, we can relate these topological structures to the type
of tracer trappings observed in the present calculations. Using the results of the topological

analysis, we are able to build a probabilistic model to interpret the tracer results.

Topological analysis of the flow structures

We study the pressure-gradient-driven turbulence in cylindrical geometry by means of a re-
duced set of resistive MHD equations in the electrostatic limit. The geometry is that of a peri-
odic cylinder, with minor radius a and length Ly = 27tR,. We use a coordinate system (r, 6, {),
in which r is the radius of the cylindrical surface, 6 is the poloidal angle, and { = z/R, where
z is the coordinate along the axis of the cylinder, so ( is an effective toroidal angle when the
cylinder is bent in a torus. The E x B velocity is written in terms of the electrostatic potential:
V, = -V, ® xz/By. The model consists of two equations, the perpendicular momentum equa-
tion for the electrostatic potential evolution, and the equation of state for the pressure evolution.
Dissipative terms are included in both equations. The plasma considered here is a model of a
configuration of the Large Helical Device (LHD) [3]. Details of the equations, configuration,

numerical methods, and main parameters can be found in Ref. [2].
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All the information on the turbulence flow is contained in the electrostatic potential ®. We
define a cubical space N, X Ng X N¢ covering the cylinder. At a fixed time 7, we define a flow
structure as the set of points such that ®(r,0,(,r) > ®ymax(P), for a suitable constant Py,
with max(®) being the maximum value & at time 7. Therefore, ®( gives a fraction of the
maximum value of ® and 0 < &y < 1. The main finding of Ref. [2] was that the structure of the
flow is filamentary. The filaments are vortices that are linked to the rational surfaces. Some of
these filamentary vortices close on themselves forming toroidal knots. These are the cycles and
they are normally located at the lowest rational surfaces. At the other low rational surfaces the
filaments are broken and we characterise them by their length. Probably the most remarkable

property that we have observed is the lognormal character of the distribution of filament lengths
[2].
Relation between flow topology and tracer transport

To study the transport properties, we investigate the time evolution of pseudo-particle tracers.
The equation of motion for the tracers is

% = ——VL;X 2 Vb,

where V) is a constant velocity along the field lines. As the tracer particles move by the turbulent
flow, we consider the particles being trapped for certain periods of times in the flow filaments
and then taking steps or flights between trapping times. This way of looking at the tracer particle
motion allows us to connect with the CTRW transport approach.

To calculate the probability distribution of the trapping times and the flights we have to first
define both of them in the context of our numerical calculations. Here, we are interested in the
radial transport and for this reason we consider flights only in the radial direction. We say that
a particle tracer performs a flight while it moves on a trajectory keeping the same sign of the
radial component of the velocity. Then, we consider a tracer to be trapped if successive radial
flights vary less than a given percentage. Normally a value of 30% has been used.

For the analysis of the flow structures [2], we considered cylindrical layers with constant
radius. In the (0, §)-plane, the filaments cross the area with the slope corresponding to ¢(r). To
visualise the topological structures and calculate their widths, we do first a transformation of the
poloidal angle 6 to 6 + { /q. With this transformation, the filaments go in the vertical direction.
Then, we project the structures to the { = 0 plane. Fig. 1 shows the resulting projection of flow
structures in the (r, 0)-plane. Also it is shown (in blue) the trajectory of a tracer. The tracer is

most of the time trapped at different structures and occasionally jumps between them.
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We have studied the evolution of tracers
for three different values of V. The initial
tracer positions are randomly distributed in
the cylinder, and we follow the trajectory of
10° tracers till the end of the calculation and
accumulate the data. This data is analysed to
identify the portion of the trajectories that the
tracers remain trapped.

For each case, we have two sets of data on
the trapping. There is one set for the trappings
that do not reach the end of the calculation,
that is, a set of data in which the trapping
phase is completed. There is another set in
which the tracers were still trapped the last
step. In this last set we have tracers that are

trapped practically during the full length of

the calculation.

We have calculated the probability distribu-
tion function (PDF) of the trapping times for the
different cases studied. If we re-scale the trap-
ping times by multiplying by Vj, we have prac-
tically the same dependence for the tail of the
PDF, as can be seen in Fig. 2. This indicates
that most of the trappings that are completed dur-
ing the calculation correspond to tracers trapped
on broken filaments, including possible multiple
trappings (see Fig. 1). The PDF is then a function
of the filament length (product of Vj by the trap-
ping time), and has a lognormal character, like
the distribution of filament lengths. The sharp in-
crease at the end of the distribution corresponds
to the tracers which trapping period has not fin-

ished by the end of the calculation.
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Figure 1: Projection of flow structures. Points
for which @ > 0.1 max(®) are in red and points
for which ® < —0.1 max(®) are in green. The

trajectory of a tracer is shown in blue.
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Figure 2: PDF of the trapping times multi-
plied by Vj for the three cases studied.
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Since the tracers are trapped on the flow struc- 10 et v e

tures, one expects that the radial flights of the

tracers during trappings will be related with the ]
radial width of the flow structures. Fig. 3 shows 5. 4] i
that the distribution of the radial width of the ;; ]
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flow structures describes very well the distribu-
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We have developed a model in the line of the

CTRW approach for simulating the trapping of Figure 3: PDF of the averaged radial flight

tracers.Walks are defined along resonant field during trappings for the three cases studied,

lines. For each walk, we take a step &r, which and of the radial width of the flow structures.
is the radial flight of the tracer when trapped.

For each tracer, the initial radial and poloidal locations are chosen randomly. For the radial
step size, dr, we use the distribution of the radial width of the flow structures. For the filaments,
the main parameter is the lenght of the filament along the tracer moves. In this case, we use the
lognormal distribution of filament lengths.

The model has two parameters: 1) pg, the probability that a tracer on a filament jumps to
another, and 2) p;, the probability of a tracer to detrap in a given step.

By choosing suitable paramaters pg and p; we have a reasonable description of the distribu-

tion of trapping times and number of flights per trapping.

Conclusions

We have studied the trapping of tracers in a turbulent field in cylindrical geometry.The trap-
ping of tracers, which do not remain trapped at the end of the calculation, seems to be due to
trapping on finite size filaments including multiple possible trappings. The cycles seem to play

arole for the tracers that remain trapped very large times, larger than the calculation time.
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