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Introduction.

Low frequency turbulence developing from micro instabilities is responsible for the phe-

nomenon of anomalous radial energy transport in magnetically confined fusion plasmas. Among

these instabilities, ion temperature gradient (ITG), interchange instabilities, and trapped elec-

tron modes (TEM) may play an important role in explaining the anomalous heat and particle

transport observed in tokamaks. These instabilities are driven by ion and electron equilibrium

gradients [1][2][3][4]. ITG seems to be responsible of the anomalous ion heat transport whereas

the TEM turbulence [5] drives electron particle and heat transport, and their interactions may

play a non-negligible role in determining the whole properties of turbulent plasma transport [6].

In order to investigate this turbulent transport one must consider a gyrokinetic approach. Fur-

thermore, capturing both micro-turbulence properties and self-organization properties on meso

time and spatial scales including large scale transport events requires flux-driven (without scale

separation between equilibrium and fluctuations) long simulation runs. In the following we

consider a model with trapped kinetic ions and electrons which captures all these features in a

reduced set of equations and which allows one to cover both TIM/TEM regimes simultaneously.

The influence of ratio of the ion to the electron temperatures will be investigated through the

linear analysis of the model. Finally, a first validation of the non-linear TERESA code will be

presented. This work is a preparatory step towards full-f 5D gyrokinetic simulations including

electrons and ions.

Model equations.

In order to derive the kinetic model describing the trapped electron and ion modes in a Toka-

mak, we assume an axisymetric magnetic toroidal configuration and use the Boozer-Clebsch

representation of the magnetic field [7] :

~B = ~∇ψ×~∇(ϕ−qθ) (1)

with q the safety factor defined by q(ψ) =
~B.~∇ϕ

~B.~∇θ
, θ and ϕ are respectively the poloidal and the

toroidal angular coordinates. ψ is the poloidal magnetic flux normalized to 2π . Hereafter, the

radial coordinate and the poloidal flux coordinate are used indifferently : {r,θ ,φ}↔ {ψ,θ ,φ}.
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In such a configuration, trapped particle motions are characterized by very different time-scales

(ωc >> ωb >> ωd), where ωc is the cyclotron frequency, ωb the back and forth frequency

(or bounce motion) and ωd the slow toroidal precession frequency. A dynamical system that

shows different periodic motions is the ideal framework for using action and angular variables

[9] [10][11] [12]: (r,θ ,φ ,vr,vθ ,vφ )→ (µ,E,ψ,α1,α2,α3) where µ (the magnetic moment),

E (the kinetic energy) and ψ are invariants and αi are angles linked to the cyclotron phase

ϕc, the poloidal and toroidal angles (θ ,ϕ) [8]. In order to derive a kinetic model describing

TIM and TEM instabilities we use the gyro-average (defined by the J0s average operator1)

over both the cyclotron motion and the bounce motion to write the Vlasov equation for each

species. This approach is justified provided the time scales associated with these two motions

are much shorter than the one characterizing the precession drift. The final model accounts for

two parameters (µ ,E) in the 2D space (ψ,α) which is close to the usual (r,φ ) space. After

normalization [12] the Vlasov equation for ions and electrons then writes :
∂ f̄e

∂ t̂
−
[
J0eΦ̂, fe

]
− ÊΩ̂d

∂ fe

∂α
= 0

∂ f̄i

∂ t̂
−
[
J0iΦ̂, fi

]
+ ÊΩ̂d

∂ fi

∂α
= 0

(2)

with Ω̂d linked to the precession frequency which does not depend on ψ and on the electric

charge of the species. The quasi-neutrality constraint ensures the self consistency of the model.

This constraint reveals particularly delicate to derive analytically in the present model in the

framework of gyro-bounce-averaged approach. After normalization, the quasi-neutrality con-

straint writes 2 [12] :

2√
π n̂eq

(∫ +∞

0
J0i fiÊ1/2dÊ−

∫ +∞

0
J0e feÊ1/2dÊ

)
=

1
T̂eq,i

[
Cad(Φ̂− εΦ〈Φ̂〉)−Cpol

(
∆̄i(Φ̂)+ τ∆̄e(Φ̂))]

(3)

Cad and Cpol are constants linked to the passing particles which are assumed to respond adia-

batically and the polarization due to the average.

Linear analysis of the system.

In order to study the linear behavior of the set of equation (2-3) for TIM and TEM modes we

write the dispersion equation [12] :

D =Cn−
∫

∞

0

[
κn +κT

(
ξ − 3

2

)]
Ωd (ξ − x)

J 2
n,ie
−ξ

ξ
1
2 dξ τ−

∫
∞

0

[
κn +κT

(
ξ − 3

2

)]
Ωd (ξ + τx)

J 2
n,ee−ξ

ξ
1
2 dξ = 0

(4)
1J0s = J0(nρc,s)J0(kδb,s) with ρc,s and δb,s are the normalized Larmor radius and the normalized banana width,

n (resp. k) the toroidal (resp. radial) mode number and J0 the 0th Bessel function of the first kind.
2with the Poisson’s brackets defined by [ f ,g] = ∂α f ∂ψ g−∂α g∂ψ f .
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with Cn =
√

π

2

(
Cad +Cpol

[
n2(ρ2

c,i +ρ2
c,e)+ k2(δ 2

b,i +δ 2
b,e)
])

that contains the coefficients cor-

responding to the passing particles and the polarization term, κ
−1
n,T =

(
∂ψ log(neq,Teq)

)−1 the

density and the temperature gradient lengths and τ the ratio of the ion to the electron tempera-

tures.

In Fig. 1 the linear instability threshold in terms of critical electron or ion temperature gradients

κT,crit (at vanishing density gradient κn = 0) is plotted against kθ ρc,i for different electronic

temperatures with the plasma parameters given in Table 1. Notice that TEM threshold exceeds

TIM threshold as long as τ becomes smaller than unity.
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Figure 1: Linear instability threshold κT as a function

of kθ ρc,i for κn = 0 and τ = 0.5,1,1.5.

δb,i 0.1

δb,e 2.10−3

ρc,i 0.01

ρc,e 2.10−4

cn 0.1

Ω̂d 1

Ti,eq 1

k 1

κn 0

Table 1: normalized parameters used

for the linear analysis.

Non-linear TERESA code.

In order to investigate the nonlinear effect of trapped electrons, a kinetic electron response

has been implemented in the nonlinear semi-lagrangian TERESA code [13]. A first validation

of this code is performed.0 10 20 30
0

10

20

30

40

50

n

ω
r
(
ω
0
)

 

 
ω r
3
2 .n

0 5 10 15 20 25 30
0

1

2

3

n

γ
(
ω
0
)

 

 
γ l i n
γ s imu

Figure 2: Comparison between linear growth rates given by the dispersion relation and TERESA code (left).

Electric potential plotted against time and α (right).
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In Fig.2 (left) the linear growth rate of 14 toroidal n modes obtained from TERESA linear

simulations is found in perfect agreement with the one calculated from the dispersion relation,

eq.(4). In Fig.2 (right) the electric potential is plotted against time and α . The phase velocity

(real frequency) can be evaluated from this figure, and is found to be in a very good agreement

with the one given by the relation dispersion.

Conclusion.
The trapped ion and electron driven modes have been studied by solving linearly a Vlasov equa-
tion averaged over the cyclotron and bounce motion of trapped particles. This model allows one
to reduce the dimensionality of the dynamical system. The distribution function depends on
the radial coordinate and the precession angle of trapped particles and is parametrized by the
energy and pitch angle. The accuracy of the model has been verified with an exact solution in
the marginal case. The validation of the non linear code TERESA has been performed for TIM
modes in the linear phase. The same validation for TEM modes is in progress. The study of
nonlinear interactions between TEM and TIM modes will be investigated.
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