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Introduction

The nonlinear growth of neoclassical tearing modes (NTMs) in tokamaks is commonly dis-

cussed in the framework of the generalized Rutherford equation (GRE) [1, 2]. The GRE is

obtained by averaging the current diffusion equation for the dominant Fourier harmonic of the

perturbation over the island region and matching to the linear, ideal MHD solution outside the

magnetic island. This way the GRE discards all information on the detailed structure of the

island: possible asymmetries and contributions from higher Fourier harmonics to the perturba-

tion. Results from the GRE qualitatively match experimental observations of NTM growth and

their stabilization by electron cyclotron current drive (ECCD) [3]. To anticipate requirements

for the suppression of NTMs by ECCD in future machines such asITER, the GRE is being used

extensively. However, the neglect of the detailed interiorstructure of the island, in particular,

the limitation to a single dominant Fourier harmonic of the perturbation might break down in

the case of localized ECCD, where the higher Fourier harmonics of the EC-driven current can

become significant [4].

We have developed a 2D reduced MHD code with the specific aim ofvalidating the GRE and

its underlying assumptions and studying the influence of higher Fourier harmonics in the case

of ECCD. In this contribution we present the first results obtained with this new code.

A 2D reduced MHD code

By focusing on a layer directly around a single magnetic island chain in a tokamak localized at

the resonant radiusrs, the magnetic island evolution can be described by the set of2D reduced

MHD equations for the helical magnetic fluxψ and the potentialϕ:
(

∂
∂ t

+v ·∇
)

ψ = η j−E, (1)

(

∂
∂ t

+v ·∇
)

∇2ϕ = B ·∇ j+ν∇4ϕ, (2)

whereη is the resistivity,ν the viscosity, the current densityj ≡ ∇2ψ, the magnetic fieldB =

êz ×∇ψ +Bzêz, and the velocityv = êz ×∇ϕ. In line with assumptions made in the derivation
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of the Rutherford equation, the equilibrium flux function isapproximated by the leading term

of its Taylor expansion around the resonant surface, i.e.ψeq(x) = 1
2x2ψ ′′

eq, wherex ≡ r− rs and

the prime indicates the derivative with respect tox. Note that in normal tokamak equilibria with

a positive toroidal current, the equilibrium shearψ ′′
eq is negative. The constantE in the equation

for the flux evolution keeps the equilibrium flux constant in time. The equilibrium potential is

set to zero. The perturbations to both flux and potential are written in terms of Fourier series

ψ̃(x,ξ ) =
+∞

∑
k=−∞

ψk(x)e
ikξ and ϕ̃(x,ξ ) =

+∞

∑
k=−∞

ϕk(x)e
ikξ . (3)

Note, that due to the symmetry of the equations inξ , we can specifyψ−k(x) = ψ+k(x) and

ϕ−k(x) =−ϕ+k(x). The radial boundary conditions for the flux are given in terms of the step in

the logarithmic derivative over the simulated radial domain [−L : +L] of each Fourier compo-

nent of the perturbation. This way the boundary conditions are specified in terms of the tearing

stability parameters∆′
k of each Fourier harmonic:

ψ ′
k(±L)

ψk(±L)
=±

∆′
k

2
. (4)

The corresponding boundary condition for the potential is obtained from linear ideal MHD as

ϕ ′
k(±L)

ϕk(±L)
=±

∆′
k

2
∓

1
L
. (5)

The stability of a mode is determined in the first place by the equilibrium profiles outside the

narrow layer that is simulated. A positive value of∆′
k means that this particular Fourier har-

monic is unstable. In that case, linear theory predicts an exponential growth rateγ of the flux

perturbation which is given by [5]

γ = 0.55(∆′)4/5η3/5(kψ ′′
eq)

2/5. (6)

In practical cases only the dominant Fourier harmonick =±1 will be unstable while all higher

harmonics are typically stable.

The code that we have developed uses finite differences in theradial directionx and Fourier

decomposition in the helical angleξ ≡ mθ − nφ wherem andn are the poloidal and toroidal

mode numbers, respectively. The time stepping is performedusing a fourth order Runge-Kutta

scheme. Only the dominant Fourier harmonic is assumed to be unstable and the corresponding

positive value of∆′
1 is specified at input. All harmonics|k| ≤ 2 are taken to be stable with

∆′
k =−

2|k|m
rs

.

The (generalized) Rutherford equation, is obtained by assuming that (i) the mode is fully

determined by the leading harmonic̃ψ = 2ψ1cosξ , (ii) ψ1 is approximately constant inx,

41st EPS Conference on Plasma Physics P2.045



(iii) the island is very narrow such that the perturbed current density is j̃ = ∂ 2ψ̃/∂x2, and (iv)

inertia can be neglected such thatB ·∇ j = 0 which implies that the current density becomes a

flux function. The fourth assumption means that we can take the flux surface average of Ohm’s

law (1) 〈∂ψ̃/∂ t〉 = η j. When we integrate Ampére’s law multiplied with cosξ over the entire

domain covering the magnetic island and substitute from Ohm’s law for η j we obtain

1
2

η∆′ψ1 = η
∫ +∞

−∞
dx

∮

dξ
∂ 2ψ̃
∂x2 cos(ξ ) =

∫ +∞

−∞
dx

∮

dξ
〈

∂ψ̃
∂ t

〉

cos(ξ ) = g1w
∂ψ1

∂ t
. (7)

The left hand side is obtained by matching to the boundary conditions. The right hand side

contains the island sizew and a geometrical constantg1, which has the value 0.82 [6]. Using

the equation for the island width,w = 4
√

2ψ1/|ψ ′′
eq|, we obtain the generalized Rutherford

equation:
dw
dt

=
η
g1

(

∆′+∆′(Jbs)+∆′(JECCD)+ ...
)

, (8)

where the additional terms on the right originate from noninductive current contributions that

alter Ohm’s law [2], like perturbations of the bootstrap currentJbs or electron cyclotron driven

currentsJECCD.

First results

In order to verify the code we check that the growth rate of theisland in the linear regime is

exponential and satisfies the theoretical expression (6). Typical input parameters are equilibrium

shearψ ′′
eq= −5×105 s−1, stability parameter∆′ = 1.00 ... 100. m−1, and resistivityη = 0.01

... 1.00 m2/s. All results presented have been obtained using a limited range of Fourier modes

of −3≤ k ≤ +3. Figure 1 shows the exponential growth rateγ for (left) a scan in resistivity at

∆′ = 1.0 m−1 and (right) a scan in∆′ at η = 0.01 m2/s. The growth rate calculated by our 2D

reduced MHD code agrees well with the theoretical scaling ofequation (6). The deviation at

large values of∆′ might be explained by a break down of the constant-ψ approximation.

In a second test we continued the simulations well into the nonlinear regime. For a simulation

with ∆′ = 1.0 m−1 andη = 0.01 m2/s, we present the results in Figure 2. The left frame shows

the evolution of the island size as a function of time. After an initial exponential growth the

growth rate is seen to slow down from aboutt = 1.5 s, and then continues to grow proportional

to time as expected from the GRE. In order to compare quantitatively to the predictions of the

GRE the right frame shows the evolution of(dw/dt)/(η∆′), which according to the GRE is

expected to attain a constant value of(1/g1) = 1.22. Indeed the code results reach a constant

value ofdw/dt very close to the predictions of the GRE. Similar results areobtained over a

wide range of parameters with the larger values of∆′ showing a faster than predicted growth

also in the nonlinear regime.
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Figure 1: Scaling of the exponential growth rateγ of the dominant harmonic of the helical flux
perturbation with (left) resistivity and (right) stability index∆′. The code results are represented
by red diamonds and the blue curves represent the theoretical expression (6).
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Figure 2: Results of a simulation with∆′ = 1.0 m−1 andη = 0.01 m2/s. The left frame shows
the island sizew as a function of time. The right frame compares the simulatedrate of change
of the island size (red) to the predictions of the GRE (blue).
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