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I ntroduction
The nonlinear growth of neoclassical tearing modes (NTMsfjokamaks is commonly dis-
cussed in the framework of the generalized Rutherford egugdGRE) [1, 2]. The GRE is
obtained by averaging the current diffusion equation ferdominant Fourier harmonic of the
perturbation over the island region and matching to thealineeal MHD solution outside the
magnetic island. This way the GRE discards all informationtloe detailed structure of the
island: possible asymmetries and contributions from higloeirier harmonics to the perturba-
tion. Results from the GRE qualitatively match experimeabservations of NTM growth and
their stabilization by electron cyclotron current driveJED) [3]. To anticipate requirements
for the suppression of NTMs by ECCD in future machines sudfi@R, the GRE is being used
extensively. However, the neglect of the detailed intestoucture of the island, in particular,
the limitation to a single dominant Fourier harmonic of thegtprbation might break down in
the case of localized ECCD, where the higher Fourier harosonii the EC-driven current can
become significant [4].

We have developed a 2D reduced MHD code with the specific awvalafating the GRE and
its underlying assumptions and studying the influence didrig-ourier harmonics in the case
of ECCD. In this contribution we present the first resultsaoiéd with this new code.

A 2D reduced MHD code

By focusing on a layer directly around a single magnetiaidlehain in a tokamak localized at
the resonant radiug, the magnetic island evolution can be described by the seibatduced
MHD equations for the helical magnetic flyxand the potentiap:
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wheren is the resistivityy the viscosity, the current densify= 02y, the magnetic field =
&, x Oy + B,&,, and the velocity = &, x [¢. In line with assumptions made in the derivation



41%* EPS Conference on Plasma Physics P2.045

of the Rutherford equation, the equilibrium flux functioreigproximated by the leading term
of its Taylor expansion around the resonant surfaceyi.§(X) = 3x?%, wherex=r —rs and
the prime indicates the derivative with respecktdlote that in normal tokamak equilibria with
a positive toroidal current, the equilibrium shex;(%‘(q is negative. The constahtin the equation
for the flux evolution keeps the equilibrium flux constantime. The equilibrium potential is
set to zero. The perturbations to both flux and potential aitten in terms of Fourier series

BE = T B and  FxE) = T he. ®
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Note, that due to the symmetry of the equation< jrve can specify_y(x) = ¢ k(X) and
¢_k(X) = —¢k(x). The radial boundary conditions for the flux are given in teohthe step in
the logarithmic derivative over the simulated radial damjailL : +L| of each Fourier compo-
nent of the perturbation. This way the boundary conditiaesspecified in terms of the tearing

stability parameterd, of each Fourier harmonic:
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The corresponding boundary condition for the potentiab&med from linear ideal MHD as
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The stability of a mode is determined in the first place by ttpaildrium profiles outside the
narrow layer that is simulated. A positive value&ff means that this particular Fourier har-
monic is unstable. In that case, linear theory predicts gomeantial growth rate of the flux

perturbation which is given by [5]
y = 0.55(")*°n3/5 (k) 7°. (6)

In practical cases only the dominant Fourier harmdnic+1 will be unstable while all higher
harmonics are typically stable.

The code that we have developed uses finite differences irathal directionx and Fourier
decomposition in the helical ange= m6 — ngp wherem andn are the poloidal and toroidal
mode numbers, respectively. The time stepping is perforasaty a fourth order Runge-Kutta
scheme. Only the dominant Fourier harmonic is assumed to&talie and the corresponding

positive value ofp] is specified at input. All harmonick| < 2 are taken to be stable with

r__ 2km
k — rs °

The (generalized) Rutherford equation, is obtained by rassy that () the mode is fully

determined by the leading harmonjc = 2y, cosé, (ii) Y, is approximately constant iR,
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(iii) the island is very narrow such that the perturbed currensitigis | = d2@/9x2, and {v)
inertia can be neglected such tigat]j = 0 which implies that the current density becomes a
flux function. The fourth assumption means that we can tadltix surface average of Ohm’s
law (1) (0(/at) = nj. When we integrate Ampére’s law multiplied with dpsver the entire

domain covering the magnetic island and substitute from ®kaw for n j we obtain

snstun=n [ oxfaed Foose) = [oxfae (9 )cose) —am’L )
The left hand side is obtained by matching to the boundargitioms. The right hand side
contains the island sizae and a geometrical constagt, which has the value 0.82 [6]. Using
the equation for the island widthy = 4, /2¢n /||, we obtain the generalized Rutherford
equation:

dW n / / /
W (A N (39 + 2 (Jeccp) + ) 8
i 91( (Jos) + 4 (Jecep) + ) (8)

where the additional terms on the right originate from nduoictive current contributions that
alter Ohm’s law [2], like perturbations of the bootstrapremt J,s or electron cyclotron driven

currentsleccp.

First results

In order to verify the code we check that the growth rate ofigtend in the linear regime is
exponential and satisfies the theoretical expressionyp)cal input parameters are equilibrium
sheany}, = —5x 10° s 1, stability paramete’ = 1.00 ... 100. m?, and resistivityy = 0.01

... 1.00 nt/s. All results presented have been obtained using a liméede of Fourier modes
of —3 <k < +3. Figure 1 shows the exponential growth rater (left) a scan in resistivity at
A = 1.0 m ! and (right) a scan id\’ atn = 0.01 n¥/s. The growth rate calculated by our 2D
reduced MHD code agrees well with the theoretical scalinggqfation (6). The deviation at
large values of\’ might be explained by a break down of the constiargpproximation.

In a second test we continued the simulations well into th@inear regime. For a simulation
with A’ = 1.0 m~t andn = 0.01 n?/s, we present the results in Figure 2. The left frame shows
the evolution of the island size as a function of time. Aftariaitial exponential growth the
growth rate is seen to slow down from about 1.5 s, and then continues to grow proportional
to time as expected from the GRE. In order to compare quémétato the predictions of the
GRE the right frame shows the evolution @w/dt)/(n4’), which according to the GRE is
expected to attain a constant value(dfg;) = 1.22. Indeed the code results reach a constant
value ofdw/dt very close to the predictions of the GRE. Similar results@rtined over a
wide range of parameters with the larger valued'o$howing a faster than predicted growth

also in the nonlinear regime.



41%* EPS Conference on Plasma Physics P2.045

¢ code results ¢ code results
| | — analytical expression — analytical expression

[y
(=]
N

[y
o
N
T

growthrate [s™Y]
growthrate [s™}]

=
o
N

10}

10 10 10 10 10" 10
resistivity [m%/s] A [mY

Figure 1: Scaling of the exponential growth rgtef the dominant harmonic of the helical flux
perturbation with (left) resistivity and (right) stabilitndexA’. The code results are represented
by red diamonds and the blue curves represent the thedmtimassion (6).
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Figure 2: Results of a simulation witl = 1.0 m—* andn = 0.01 n¥?/s. The left frame shows
the island sizev as a function of time. The right frame compares the simuledéslof change
of the island size (red) to the predictions of the GRE (blue).
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