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Radial correlation reflectometry (RCR) utilizing simultaneous plasma probing by two 

microwave beams at slightly different frequencies incident normally onto the magnetic 

surface, and analysis of backscattering signals have been already used for plasma turbulence 

characterization in magnetic fusion devices for more than two decades This diagnostic 

benefits from a relative technical simplicity, however the interpretation of experimental data 

is complicated by the dominant contribution of small-angle-scattering off long-scale 

fluctuations leading to a substantial overestimation of the turbulence correlation length.  

Recently, two approaches were proposed theoretically to cope with the problem of high small-

angle-scattering contribution in reflectometry experiment. The first is based on a 

mathematical procedure of the turbulence spectrum reconstruction from the RCR data 

developed in the 1D theoretical model [1, 2]. It uses the explicit expressions for the small-

angle-scattering efficiency dependence on the fluctuation radial wavenumber provided by 1D 

theory [1] and takes a minor role of 2D effects for granted. The second approach, so called 

radial correlation Doppler reflectometry (RCDR), benefits directly from suppression of the 

small-angle scattering component in the reflectometer signal, taking place at the oblique 

enough incidence of the probing wave onto the magnetic surface. This approach was justified 

in [3] where the dependence of the sufficient incidence angle on a priori unknown turbulence 

correlation length was demonstrated. 

In the present paper we perform analysis of RCR in the framework of 2D model and justify 

the reconstruction procedure proposed in [1] in the case of incidence of probing waves onto 

the plasma close to normal. According to [1] in the case of linear density profile the 

turbulence wavenumber spectrum can be obtained from the RCR cross-correlation function 

(CCF) dependence on probing frequencies using the Fourier transform  
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where 2n  is the radial wavenumber spectrum of density fluctuations; 
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0 1 0 1, S SCCF A A      is the cross-correlation function of scattering signals 

 0SA  and  1SA   at frequencies 0  and 1  in the reference and signal channels, 
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respectively; ...   stands for statistical averaging over an ensemble of the fluctuations; 
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   is the radial separation of the cutoff positions for different probing 

frequencies; L is the density scale length at the frequency   wave cutoff surface. Expression 

(1) is valid in wide wavenumber domain determined by condition 1L  . Unfortunately, as 

the drift wave turbulence, being strongly elongated along the magnetic field, is nevertheless 

actually two-dimensional, the 1D analysis resulting in (1) appears to be oversimplified, that 

stimulates us treating the RCR performance in slab 2D geometry.  

In the 2D case the reflectometry scattering signal is provided by the reciprocity theorem in the 

form of an integral over the plasma cross-section perpendicular to the magnetic field  
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where P  is the probing ordinary wave power over a unit length in the magnetic field 

direction, e and em  are the electron charge and mass, respectively,  n r
  is the spatial 

distribution of the density fluctuations,  ,aE r 


 is the phase calibrated probing wave 

amplitude at frequency   corresponding to the unit power launched through the receiving 

antenna into the unperturbed plasma, and S  is the plasma poloidal cross-section. According 

to (2) the cross-correlation function of two scattering signals at slightly different probing 

frequencies 0  and 1  is determined by a multiple integral  
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The probing wave electric field aE  here can be represented as a superposition of the partial 

waves emitted by the antenna         exp ,
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yf k  being 

the antenna directivity diagram over the poloidal wave number yk  and   , yW x k  in the case 

of the linear density profile is given in terms of the integral proportional to the Airy function     
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   ;    2 2 21 /y yL k L k c   ,  1/32 2/L c   is 

the Airy scale and   standing for the tilting angle of the probing beam with respect to the 
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density gradient. In the present paper when performing numerical evaluation of the CCF 

using (3) we assume the Gaussian antenna diagram 

     1/2 2 22 exp / sin / 2y yf k k c          
 with 2  being a probing microwave 

beam waist. The density fluctuation two-point CCF is also assumed Gaussian   

        2 22 2, , exp cn x y n x y n x x y y l              .The results of the RCR CCF 

computation in the case of normal incidence ( 0  ) of a wide microwave beam ( 1.6cm  ) 

at frequency / 2 75GHz    onto the “large” plasma ( 12L cm ) is shown in Fig.1. The 

probing wave cutoff in this case is situated in the antenna near field. The turbulence 

correlation length is taken to be small 0.4cl cm , however the corresponding RCR CCF 

appears to be much wider. Accordingly, the Fourier transform of the RCR CCF results in the 

RCR spectrum, which is substantially narrower than the turbulence radial wavenumber 

spectrum, as it is seen in Fig.2. However, after multiplication by the wavenumber absolute 

value ||, in accordance with 1D procedure based on (1), the RCR spectrum appears to be 

similar to the turbulence spectrum (see Fig.2). The difference at small wavenumbers is 

related to the extrapolation of CCF dependence at large L in Fig.1 when making the Fourier 

transform. Then the inverse Fourier transform of the reconstructed density fluctuation 

spectrum was used to obtain the two-point cross-correlation function in excellent agreement 

with the initial one (see Fig.3). 

  

 

 

 

Fig.1 The RCR CCF. 
 Blue - real part, red - imaginary 

part, black – absolute value, 
magenta - the turbulence CCF 

Fig.2 The RCR and turbulence 
radial wavenumber spectra. Blue 
– RCR (real part); magenta – 
turbulence; light blue and rose – 
reconstructed real and imaginary 
parts.  

Fig.3 The reconstructed 
turbulence CCF. Blue and red – 
real and imaginary parts of 
reconstructed CCF; magenta – 
initial turbulence CCF 

We applied the 1D reconstruction procedure to the case of slightly oblique ( 10   ) 

incidence of the probing wave as well. The same plasma parameters and the reflectometer 

frequency were used in the computations. As it is seen in Fig.4, the width of the RCR CCF 

decreases in this case due partial suppression of small-angle scattering predicted in [3], 

remaining, however, still much larger than the turbulence correlation length. Nevertheless, 
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utilization of this CCF in the 1D reconstruction procedure [1] based on equation (1) leads to 

the turbulence spectrum which is similar to the Gaussian spectrum of turbulence (see Fig.5). 

Finally, the reconstructed turbulence two-point CCF is also obtained in Fig.6 in agreement 

with the computation input. However, they differ at large separation of the points L, and the 

imaginary part of the reconstructed turbulence CCF is larger here than in the normal 

incidence case.  

   

Fig.4 The RCR CCF. 
 Blue - real part, red - imaginary 

part, black – absolute value, 
magenta - the turbulence CCF. 

10    

Fig.5 The RCR and turbulence 
radial wavenumber spectra. Blue– 
RCR (real part); magenta – 
turbulence; light blue and rose – 
reconstructed real and imaginary 
parts. 10    

Fig.6 The reconstructed 
turbulence CCF. Blue and red – 
real and imaginary parts of 
reconstructed CCF; magenta – 
initial turbulence CCF. 10    

We have also confirmed the feasibility of the 1D procedure in the case of the normal 

incidence of a narrower probing beam ( 0.8cm  ), for which the cutoff is already situated in 

the antenna wave field. The corresponding spectra and CCFs are shown in Fig.7–9. 

  

Fig.7 The RCR CCF. Blue - real 
part, red - imaginary part, black – 
absolute value, magenta - the 
turbulence CCF.  

Fig.8 The RCR and turbulence 
radial wavenumber spectra. Blue– 
RCR (real part); magenta – 
turbulence; light blue and rose – 
reconstructed real and imaginary 
parts.  

Fig.9 The reconstructed 
turbulence CCF. Blue and red – 
real and imaginary parts of 
reconstructed CCF; magenta – 
initial turbulence CCF.  

Summarizing, we would like to underline that the turbulence spectrum reconstruction 
procedure from the RCR data proposed in [1] based on the 1D theory predictions appears to 
be very effective when applied to the interpretation of the realistic 2D computational data and 
thus could be recommended for implementation at fusion reflectometry experiments. 
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