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Signals with rapidly changing carrier frequencies are often attributed to the formation and sub-
sequent evolution of phase space holes and clumps in the fast particle distribution [1, 2]. How-
ever, their origin has never fully been explained. In the following, we show that hole-clump
formation follows from the presence of a nearly unmodulated phase space plateau in the fast
particle distribution, which gives rise to a pair of shifted edge modes that destabilize due to
dissipation in the background plasma and nonlinearly evolve into holes and clumps.

For simplicity, we consider electrostatic oscillations in a one-dimensional, uniform plasma
equilibrium comprised of immobile ions, cold electrons and a low density beam of energetic
electrons. The cold electrons respond linearly to the electric field E (x,t), so their perturbed

velocity Ov, (x,t) satisfies the linear fluid equation

= —E-2yv., (1a)
m

where a linear friction term has been added in order to introduce dissipative wave damping.
The fast electrons interact resonantly with the electric field, and so are described kinetically in
terms of their distribution F (x,v,t) = 8f (x,v,t) 4+ Fy (v), which evolves according to the Vlasov
equation
oF 4 IF e EaF
R V— — — _ =
ot ox m, dv

and whose unperturbed part Fy(v) is assumed to have a constant, positive velocity gradient

0, (1b)

throughout the wave-particle resonance. The system is closed by means of Ampére’s law, which

relates the perturbed currents in the two electron species to the electric field, i.e.

%_If :8% {neo5ve+/5fdv} , (1)
where n,( is the unperturbed density of cold electrons. On their own, the cold electrons support a
mode that oscillates at the electron plasma frequency ®j.. In the presence of the fast electrons,
that mode is driven at linear rate y;, o dFp/dv and linearly damped at rate y;. A numerical
algorithm that solves Eqs. (1a) — (Ic), given values for ¥, and 7}, was described in [3], where
also frequency chirping due to hole-clump formation and evolution was thoroughly investigated.
That same tool was employed for all simulations presented in this contribution (i.e. those on

display in Figs. 1, 2 and 5).



41%* EPS Conference on Plasma Physics P2.056

3000 10 9000
8000
2500
5 e - 5 7000
2000 R e nE 6000
‘ - \M"J , Md-‘-‘M
aa % g i —
= (. i v T 5000
1500 S o EREIRY im0 HW‘IML‘ oy ||
Ny i \ Iy | 2
iy "W..'f ‘ . g '.l;.i\‘ ;
1000 B A . i 3000
: 4- =
-5 = = 1 2000
500
1000
O _10 Tatm O

1000 2000 3000 4000 5000

Figure 1: Frequency chirping close to (left) and far from (right) the instability threshold.

It was previously widely accepted that hole-clump formation and, therefore, frequency chirp-
ing only occurs when the mode is weakly driven close to the instability threshold, [1], i.e. when
0 <9 — Y < YL, Y4- On the contrary, Fig. 1 displays frequency chirping for both y,;/9, = 0.9
and 0.1, i.e. close to and far from the threshold. Moreover, these simulations reveal two ad-
ditional important features of hole-clump generation, namely that a) the chirping components
initiate noticably shifted from the original resonance and b) each hole-clump launch is preceded
by the formation of a nearly unmodulated phase space plateau with a velocity width slightly

larger than the observed initial shifts in phase velocity (cf. Fig. 2).

Figure 2: Phase space snapshots of the fast electron distribution during hole-clump generation when

Ya/ YL = 0.1, i.e. far from the instability threshold.

A natural first step is to assess the linear stability of the plateau state on display in Fig. 2. To
do so, we adopt a simplified, entirely unmodulated shelf distribution with discontinuous edges
(cf. Fig. 3). The dispersion relation according to Landau, cf. [4], i.e.

(D,%e B &2 mde/dv
o(o+iv.) mek) kv—o
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Figure 3: Simplified fast electron distribution used for linear stability analysis of the plateau state ob-

served in the simulations.

becomes then

1 1
e(zw,y) =wz+iy+log[l —z]—log[l+z]+ — — —— =0, 3
(Gw,y) =wztiy+log[l -z —log{l +-2]+ - —— 7 3)

where z = (0 — wp,) /kAv, w = TkAv /7y, Y = mY,/ v and it has been assumed that zg =Re[z] €

(—1,1), which corresponds to phase velocities inside the plateau, while kAv, 4, 71 < @pe.
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Figure 4: Roots of the dispersion relation in the absence a) and presence b) of dissipation. In a), the
arrows indicate the root movement with increasing plateau width w, whereas the arrows in b) indicate

that of increasing v from a plateau with fixed w > 4.

As indicated by the cartoons in Fig. 4, there are always three roots of Eq. (3). When y =
0, i.e. in the absence of dissipation, one always sits at z = 0 (the blue dot in Fig. 4a). The
complimentary two bifurcate mirrorwise according to the following: For w < 4 they form a
stable/unstable conjugated pair (shown in red) on the imaginary axis that approaches the origin
with increasing w. At w = 4, all three roots coalesce at the origin. For w > 4, they diverge
from z = O along the real axis, tending asymptotically to z = 1 as w — oo. The latter type

(shown in green) are dubbed edge modes, and it is important to note that all plateaus observed
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in the simulations during hole-clump launches have w > 4. Interestingly, whereas the central
mode damps in the presence of dissipation, when y > 0, the edge modes actually destabilize

(cf. Fig. 4b). E.g., for a large plateau with |zg| < 1, an expansion in 1 — |zg| < 1 yields
wrE[l-w/ (W+P)], a=y/ (W+7), (4)

where z; = Imz].

The reason that the edge modes are driven rather than damped by dissipation is that they
are negative energy waves, which simply means that their presence lowers the total system
energy. As the dissipative friction term in Eq. (1a) removes energy, it therefore drives such
oscillations. Indeed, the wave energy (cf. [5]) of the plateau modes is proportional to de/dz o<
w [1 —zz}z —4, so the sub-critical stable/unstable pair has positive energy whereas the edge

modes have negative energy.
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Figure 5: Nonlinear evolution of prescribed shelf with initial width w = 107.

Finally, the conversion from dissipation-driven, linear edge modes into holes and clumps is
demonstrated via nonlinear simulations of a prescribed shelf (cf. Fig. 5). The modes are found
at the predicted phase velocities and grow with the predicted growth rates as they acquire their
separate trapping regions and eventually peel of the plateau in the form of hole-clump pairs.
The remaining plateau is somewhat smaller, but still unstable, so the process continues, thereby

gradually eroding the plateau towards the critical width w = 4.
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