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 We are pursuing a cross-benchmarking and validation initiative for tokamak 3D 
equilibrium calculations, with 11 codes participating: the linearized tokamak 
equilibrium codes IPEC[1] and MARS-F[2], the time-dependent extended 
MHD codes M3D-C1[3], M3D[4], and NIMROD[5], the gyrokinetic code XGC[6], as well as 
the stellarator equilibrium codes VMEC[7], NSTAB[8], PIES[9], HINT2[10] and SPEC[11].  
Dedicated experiments for the purpose of generating data for validation have been done on the 
DIII-D tokamak.  The data will allow us to do validation simultaneously with 
cross-benchmarking.  Cross-benchmarking calculations have been finding a disagreement 
between the VMEC stellarator equilibrium code and tokamak linearized 3D equilibrium codes.  
Investigation of the source of the disagreement has led to new insights into the domain of 
validity of these codes.  Solutions from additional codes provide further insight into the source 
of the disagreement.  In Ref 12, comparisons of linear and nonlinear plasma response models 
are discussed in terms of differences between dynamic evolution and perturbed equilibrium 
calculations.  (Note that the magnetic field used there for the VMEC calculations was different 
from that used for the linearized calculations.) 
 Both stellarator and tokamak equilibrium codes are participating in our  initiative.  Some of 
the stellarator codes assume “stellarator symmetry”, which is a symmetry of the magnetic field 
with respect to combined reflection in the poloidal and toroidal angles. On the other hand, some 
of the tokamak equilibrium codes are perturbative, assuming that the nonaxisymmetric 
component of the magnetic field is small compared to the axisymmetric component. We are 
working with equilibria that have both of these properties, to allow us to do 
cross-benchmarking between stellarator and tokamak codes.  Our initial calculations have 
focused on DIII-D shot number 142603, which was part of a campaign to study ELM 
suppression using externally imposed nonaxisymmetric fields  

Fig. 1 shows the radial displacement of the q = 8.5/3 surface as a function of the poloidal 
angle, relative to the corresponding axisymmetric equilibrium solution, as calculated by 
VMEC, IPEC and MARS-F.  There is a significant disagreement between the VMEC solution 
and the solutions from the linearized equilibrium codes on the inboard side.  We have identified 
two sources of disagreement between the codes. One source of disagreement has emerged from 
a study of the solutions for simple model equilibria.  The equilibria have large aspect ratio and a 
circular boundary perturbed by a single harmonic.  Fig. 2 shows IPEC solutions for three such 
equilibria and also the corresponding solutions for a perturbed circular cylinder.  The IPEC 
solutions are close to those for a cylinder.  There is an n = 1, m = 2 surface in the plasma, and the 
normal displacement in the cylindrical solution goes to zero inside that surface.  The IPEC  
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solution near the q = 2 surface is approximately 
a step function, and there is a localized current 
near the rational surface that is associated with 
the large radial derivative of the displacement. 
     Fig. 3 shows a set of VMEC solutions for R/a 
= 100, a circular boundary perturbed by a single, n 
= 1, m = 2 Fourier harmonic with magnitude 10-6, 
and various numbers of radial grid surfaces.  (The 
amplitude of the perturbation is plotted relative to 
its value on the boundary.)  It is plausible that the 
solutions will converge to an approximate step 
function as the number of radial grid surfaces is 
further increased, but even with 1600 radial grid 
surfaces the VMEC solution is not close to a step 
function.  The corresponding component of the 
current density is shown in Fig. 4.  The n = 1, m = 

2 component of the current density is becoming increasingly localized with increasing radial 
resolution, but even with 1600 radial grid surfaces the current is not well localized.  (A similar 
VMEC study, with similar results, was done by Monticello et al.[13]) 
   A second source of disagreement between VMEC and the linearized codes is the linearization 
itself.  The linear approximation is valid only when the amplitude of the perturbation is sufficiently 
small.  IPEC assumes good surfaces.  When the amplitude of the perturbation is sufficiently large, 
the perturbed flux surfaces overlap, signaling a breakdown of the linear approximation.  Figure 5 
shows an evaluation of the overlap criterion for an equilibrium calculated by the linearized 
M3D-C1 code for shot 142603.  Roughly everything outside of the q = 3.5 surface satisfies the 
overlap condition, despite the fact that the perturbation amplitude is 3/ 10 .B B    The overlap 
condition is also satisfied in the neighbourhood of the rational surfaces.  Although the assumption 
of good surfaces breaks down in the overlap region, it is still possible to calculate a perturbed 
magnetic field in that region.  The field lines are stochastic.  It remains to determine whether the 
magnetic field calculated in this way gives a useful approximation to the self-consistent field. 

Normal displacement for IPEC vs. Cylinder
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Fig. 1.  Perturbation amplitude (change in  
the radial location of the q = 8.5/3 surface) at 
=0 as a function of the poloidal angle, as 
calculated by VMEC, IPEC and MARS-F.   
= 0 corresponds to the outboard midpland 
and  =   to the inboard midplane.  (Data 
from E. Lazarus, J-K Park, and A. Turnbull.) 

Fig. 2.  IPEC solutions for three equilibria having 
R/a = 10 and a circular boundary perturbed by a 
single harmonic having toroidal mode number 
n = 1.  For comparison,  the dashed lines show the 
corresponding analytic solutions for a perturbed 
cylinder.  (Figure from J.K. Park.) 
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Fig. 3. VMEC solutions with R/a=100, a perturbed 
circular boundary, and various numbers of radial 
grid surfaces.  (Figure from S. Lazerson.) 

 
 
 
 
 
  
  

    Boozer and Pomphrey have looked at the 
consequences of the breakdown of the linear 
approximation in the neighborhood of 
rational surfaces.[14]  The localized current 
in the linear solution does not entirely 
eliminate island formation at the 
rational surface.  A small island remains, 
filling the region where the linear 
approximation breaks down.  The residual 
island is much smaller than the island that 
would appear in the absence of the localized 
current. 
    The q=8.5/3 surface is stochastized in the 
equilibrium solution produced by the HINT2 
code (Y. Suzuki), and it is also broken in the 
nonlinear M3D-C1 equilibrium solution (N. 
Ferraro). 
     Fig. 6 is an overlay of three Poincare 
plots for the perturbed q=2.42 flux surface in 
M3D-C1 equilibrium solutions, with the 
perturbation scaled up by a factor of 20 to 
make it visible.  The green line corresponds  

to a solution of the linearized equilibrium equations, the  blue line to a nonlinear solution at t = 
16 μs, and the pink line to a nonlinear solution at t = 260 μs.  Despite the breakdown of the linear 
approximation in a substantial region near the plasma boundary, the linear and nonlinear 
solutions are approximately equal.  This suggests that the difference between the linearized 
codes and VMEC is probably not caused by the breakdown of the linear approximation.  A more 
likely explanation is the difficulty that VMEC has in handling localized currents at rational 
surfaces. 
     N. Ferraro has also produced M3D-C1 solutions for rotating and nonrotating plasmas. 
Plasma rotation is known to drive screening currents at rational surfaces.  The nonrotating 
plasma gives an equilibrium solution with a small perturbation amplitude on the inboard side. 

Fig. 5.  Evaluation of overlap condition for an 
equilibrium calculated by the linearized M3D-C1 
code for shot 142603.  (Figure from N. Ferraro.) 

Fig. 4.  Magnitude of the n = 1, m = 2 
component of the current for the equilibrium 
solutions of Fig. 3.  (Fig. from S. Lazerson.)
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A solution with an imposed rotation frequency equal to that 
observed in the experiment displays a larger perturbation 
amplitude on the inboard side.  This provides further evidence 
that the disagreement between VMEC and the linear codes can 
arise from the absence of localized screening currents in 
VMEC. 
     McFadden, Cerfon and Lazerson have produced an 
equilibrium solution for shot 142603 using the NSTAB code.  
NSTAB is similar to VMEC, in that it assumes good surfaces, 
but it does not have a free boundary capability.  It is believed 
that NSTAB handles localized currents at rational surfaces more 
accurately than VMEC.  NSTAB was used to do a fixed 
boundary calculation, with the VMEC plasma boundary shape 
imposed.  Nevertheless, the NSTAB solution is intermediate 
between that of VMEC and the linear codes, showing a larger 
perturbation amplitude on the inboard side than VMEC.  This 
provides further evidence that the disagreement between 
VMEC and the linear codes arises from the absence of localized 
screening currents in VMEC. 

      The evidence suggests that the VMEC solution for DIII-D shot 142603 differs from the 
solutions of the linearized equilibrium codes because of the absence of localized screening 
currents in VMEC.  The question remains whether such currents actually exist in experiments.  A 
series of experiments has been done on DIII-D, including important new diagnostic capabilities, in 
part to answer that question.  The diagnostics included more than 100 new magnetic field sensors 
positioned on the high and low field sides of the tokamak.  A set of shots and time slices are being 
selected for further analysis, and the data will be used for validating 3D equilibrium calculations. 
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Fig. 6.  Overlay of three 
Poincare plots for the 
perturbed q=2.42 flux 
surface in M3D-C1 
equilibrium solutions, with 
the perturbation scaled up by 
a factor of 80. (Ferraro) 
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