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Modelling of the wave field for RF-heating is a challenging task because of the spatial 

dispersive nature of magnetised plasmas and the co-existence of different waves. The issue 

can be handled by Fourier decomposing the wave equation [1]. Hybrid methods using 

Fourier decomposition in the toroidal and the poloidal directions and FEM (finite element 

methods) decomposition across the flux surfaces are commonly used. The Fourier 

decomposition leads to dense matrixes that become time consuming to invert. FEM 

methods have the advantages of producing local decomposition which, in general, is faster 

to invert, but for which it is more difficult to include spatial dispersive effects. Lately 

methods to include or correct for spatial dispersive effects have been developed [2-4]. Here 

a method is proposed using operator splitting to correct for spatial dispersive effects where 

the correction term appears as a source function in the wave equation representing induced 

current by the wave field. The wave equation is then solved by means of iteration with the 

source function calculated from the previous wave field by separating it locally into planar 

waves and using susceptibility tensors developed for hot uniform plasmas. The method 

enables modelling of upshift, finite Larmor radius effects to all order and modelling of 

kinetic waves with standard global wave solver without expanding the susceptibility tensors 

into higher order differential operators or solving integral equations.  

 Waves launched into a dispersive medium by an antenna can be described by  
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where Jant is the antenna current, Jind the current induced in the plasma by the electric wave 

field E, here we assume to be a linear operator. The induced current density depends 

on interactions between the charged particles and the wave field before the actual time, 

which makes the calculations of the induced current non-trivial. In the Fourier space (ω, k) 

the current induced by a fluctuating electric field can straightforwardly be defined by 
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When transforming the response into the real space the local current is then given by  

( ) ( ) (, ˆ, , *ind j jl lJ t t E tσ=x x ,      (4) 

where * here denotes the convolution between the electric field and ( )ˆ ,jl tσ x , the inverse 

Fourier transform of the ( ),jlσ ω k . The convolution describes non-localized wave-particle 

interactions. The dominating spatial dispersive effects in the ion cyclotron frequency range, 

ICRF, arise from the gyro motion and the spatial localisation of the resonances. The gyro 

motion affects the absorption and introduces new waves, the kinetic Alfvén waves and the 

Bernstein waves, with length scale of the order of the gyro radius. The spatial dispersive 

effects complicate the problem by that the response depends on the wave vector and the 

possibility of co-existence of several waves having different response tensors. Traditionally 

the problem is solved by substituting Eq. (2) into Eq. (1). Because of the complicated 

structure of the operator describing the induced current, Green et al [4] proposed to solve 

Eqs. (1, 2) through iterations, so called operator splitting. To take into account the Doppler 

broadening they calculated the induced current by integrating the change in velocity along 

unperturbed particle orbits in the calculated wave field. To calculate the wave field by 

means of iteration required special iteration methods. The minimum polynomial 

extrapolation method, MPE, provided converged results. 

Calculation of the current by following the orbit in the wave field is time 

consuming. To avoid such calculations we assess if the non-local effects can be included in 

a more simplified way. Wave-particle interactions at high frequency in inhomogeneous 

plasmas such as in a tokamak differ conceptually from that in homogeneous plasmas. When 

the decorrelation time is shorter than the bounce time, the Doppler shifted resonance 

becomes the resonance and not the bounce resonances.  Assuming that the wave field can 

be decomposed locally into different coherent planar waves a particle moving along a 

magnetic field line may then resonate with several planar waves. Because of the rapid 

variation of the phase difference between the wave and particle motion, interactions with a 

single wave can be calculated with the stationary phase method. For simplicity we assume 

the interactions to be well localised and to take place at the stationary phase points. A 

single particle interacts then only with one wave at the same location described by (tk, zk) 

provided v|| ≠ 0 and the parallel wave numbers k||,k differ for the different waves. Between 

the interactions the particle phase may be decorrelated e.g. due to collisions. The change in 
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the velocity at a point (t0, z0) of a particle having a velocity v0 depends then on all previous 

interactions, which is obtained by integrating the force caused by the wave-particle 

interaction along the particle orbit. Taking into account the decorrelation one obtains 

 

( ) ( )0 0 0 0, , , exp k kk
k

z t i Ze m t kφ δΔ = + ×∑v v E E v B Δ ,            (5)  

where B is the magnetic induction caused by the wave field and ( )0 kk
Ze m t+ × ΔE v B is 

the effective acceleration at the resonance zk at the time tk, δk is the effective correlation of 

this change remaining at the time t0 and φk is the change in phase between the resonance 

and the point (t0, z0). The interaction time, 2Δt, can be defined as twice the time it takes for 

the phase difference to increase with π/2 and the corresponding distance, 2Δl, which gives  
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where q is the safety factor, R major radius, r minor radius θ the poloidal angle. A 

considerable simplification is obtained, if we assume the decorrelation time to be longer 

than the resonant interaction time 2Δt, but sufficiently short for the different interactions to 

be decorrelated. Then only the contribution from the wave resonating at z0 remains, which 

gives δk = 0 if zk ≠ z0 and δk = 1 if zk = z0.  

For completely decorrelated interactions we need only to take into account the 

variations of the wave field along the magnetic field over a distance 2Δl to resolve the 

resonances i. e. to calculate the poloidal upshift, which can then be done by decomposing 

the wave field locally into planar waves. The response of a bi-Maxwellian plasma can then 

be approximated using the plasma dispersion function for each planar wave. 

The effects of the gyro motion can be included by integrating the acceleration of the 

particle by the wave field over a gyro orbit. The induced current in a non-uniform plasma 

for monochromatic waves is given by 
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where ( ) ( )0, expl lE E i d tω= −∫x k x  and ( ),jlσ ω k  is the conductivity tensor in a 

homogeneous hot plasma and ( ), ,jl Eσ ω k l is a higher order correction term ensuring that 

divergence of the energy flux vanishes in absence of absorption. 
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Because the important spatial dispersive effects in the ICRF are pseudo-localised 

the wave field needs only to be locally decomposed of the order of a gyro radius for the 

gyro motion and 2Δl for the Doppler shift. The advantage with a local decomposition is that 

we can regard the different interactions to be uncorrelated, which requires a quasi-linear 

normalisation of the wave field. An ordinary Fourier decomposition requires the modes to 

be correlated. The continuous Morlet wavelets are well suited for such a decomposition, for 

which the transform is defined by 
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where * denotes the complex conjugate and ψm,n is related to the mother wavelet  ψ  by 
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. The effective number of oscillations of the wavelet is 

defined by ω0. The inverse transform is given by 
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When modelling the induced current the derivative 0, /lE x∂ ∂ in Eq. (7) is calculated by 

taking the derivative on the envelop function of the wavelet given by. Modelling the upshift 

with FEM codes for the fast magnetosonic wave requires that the wave field is decomposed 

into wavelets in the poloidal direction on each flux surface. As an initial approximation the 

current density obtained from a hot dielectric tensor with k|| = nφ/R can be used with 

perpendicular to the flux surfaces. Note the MPE can be initialized by using a few initial 

current distributions obtained e.g. from different k

⊥k

|| values in the dielectric tensor.  

Modelling slow kinetic waves requires wavelet decomposition both in the poloidal 

direction and across the magnetic surface where the current distribution has to be resolved 

within a gyro orbit.  
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