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Modelling of the wave field for RF-heating is a challenging task because of the spatial
dispersive nature of magnetised plasmas and the co-existence of different waves. The issue
can be handled by Fourier decomposing the wave equation [1]. Hybrid methods using
Fourier decomposition in the toroidal and the poloidal directions and FEM (finite element
methods) decomposition across the flux surfaces are commonly used. The Fourier
decomposition leads to dense matrixes that become time consuming to invert. FEM
methods have the advantages of producing local decomposition which, in general, is faster
to invert, but for which it is more difficult to include spatial dispersive effects. Lately
methods to include or correct for spatial dispersive effects have been developed [2-4]. Here
a method is proposed using operator splitting to correct for spatial dispersive effects where
the correction term appears as a source function in the wave equation representing induced
current by the wave field. The wave equation is then solved by means of iteration with the
source function calculated from the previous wave field by separating it locally into planar
waves and using susceptibility tensors developed for hot uniform plasmas. The method
enables modelling of upshift, finite Larmor radius effects to all order and modelling of
kinetic waves with standard global wave solver without expanding the susceptibility tensors
into higher order differential operators or solving integral equations.

Waves launched into a dispersive medium by an antenna can be described by
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where J,p is the antenna current, Ji,g the current induced in the plasma by the electric wave
field E, here we assume L(E) to be a linear operator. The induced current density depends
on interactions between the charged particles and the wave field before the actual time,

which makes the calculations of the induced current non-trivial. In the Fourier space (o, k)

the current induced by a fluctuating electric field can straightforwardly be defined by
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Jgj (0. K) =0 (0,k)E,. (3)
When transforming the response into the real space the local current is then given by
Jig; (6X) =6 (LX) *E (1,X), 4)

where * here denotes the convolution between the electric field and 6'j, (t,X), the inverse

Fourier transform of the o (@,k). The convolution describes non-localized wave-particle

interactions. The dominating spatial dispersive effects in the ion cyclotron frequency range,
ICREF, arise from the gyro motion and the spatial localisation of the resonances. The gyro
motion affects the absorption and introduces new waves, the kinetic Alfvén waves and the
Bernstein waves, with length scale of the order of the gyro radius. The spatial dispersive
effects complicate the problem by that the response depends on the wave vector and the
possibility of co-existence of several waves having different response tensors. Traditionally
the problem is solved by substituting Eq. (2) into Eq. (1). Because of the complicated
structure of the operator describing the induced current, Green et al [4] proposed to solve
Egs. (1, 2) through iterations, so called operator splitting. To take into account the Doppler
broadening they calculated the induced current by integrating the change in velocity along
unperturbed particle orbits in the calculated wave field. To calculate the wave field by
means of iteration required special iteration methods. The minimum polynomial
extrapolation method, MPE, provided converged results.

Calculation of the current by following the orbit in the wave field is time
consuming. To avoid such calculations we assess if the non-local effects can be included in
a more simplified way. Wave-particle interactions at high frequency in inhomogeneous
plasmas such as in a tokamak differ conceptually from that in homogeneous plasmas. When
the decorrelation time is shorter than the bounce time, the Doppler shifted resonance
becomes the resonance and not the bounce resonances. Assuming that the wave field can
be decomposed locally into different coherent planar waves a particle moving along a
magnetic field line may then resonate with several planar waves. Because of the rapid
variation of the phase difference between the wave and particle motion, interactions with a
single wave can be calculated with the stationary phase method. For simplicity we assume
the interactions to be well localised and to take place at the stationary phase points. A
single particle interacts then only with one wave at the same location described by (tx, zx)
provided v # 0 and the parallel wave numbers K differ for the different waves. Between

the interactions the particle phase may be decorrelated e.g. due to collisions. The change in
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the velocity at a point (ty, zg) of a particle having a velocity Vo depends then on all previous
interactions, which is obtained by integrating the force caused by the wave-particle

interaction along the particle orbit. Taking into account the decorrelation one obtains

AV(Zy,t,,V,,E) =D expig Ze/m(E+v, xB), At S, (5)
k

where B is the magnetic induction caused by the wave field and Ze/m(E+v,xB), At is

the effective acceleration at the resonance 7 at the time ty, o is the effective correlation of
this change remaining at the time ty and ¢k is the change in phase between the resonance
and the point (1, zg). The interaction time, 2At, can be defined as twice the time it takes for
the phase difference to increase with 1/2 and the corresponding distance, 2Al, which gives
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where g is the safety factor, R major radius, r minor radius & the poloidal angle. A
considerable simplification is obtained, if we assume the decorrelation time to be longer
than the resonant interaction time 2At, but sufficiently short for the different interactions to
be decorrelated. Then only the contribution from the wave resonating at zy remains, which
gives & = 0if zx #2p and & = 1 if zx = 2.

For completely decorrelated interactions we need only to take into account the
variations of the wave field along the magnetic field over a distance 2Al to resolve the
resonances i. €. to calculate the poloidal upshift, which can then be done by decomposing
the wave field locally into planar waves. The response of a bi-Maxwellian plasma can then
be approximated using the plasma dispersion function for each planar wave.

The effects of the gyro motion can be included by integrating the acceleration of the
particle by the wave field over a gyro orbit. The induced current in a non-uniform plasma
for monochromatic waves is given by
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where E, = E,, (X)expi(jkdx—wt) and o (k) is the conductivity tensor in a

homogeneous hot plasma and & (a),k, E,)is a higher order correction term ensuring that

divergence of the energy flux vanishes in absence of absorption.
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Because the important spatial dispersive effects in the ICRF are pseudo-localised
the wave field needs only to be locally decomposed of the order of a gyro radius for the
gyro motion and 2Al for the Doppler shift. The advantage with a local decomposition is that
we can regard the different interactions to be uncorrelated, which requires a quasi-linear
normalisation of the wave field. An ordinary Fourier decomposition requires the modes to
be correlated. The continuous Morlet wavelets are well suited for such a decomposition, for

which the transform is defined by
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where * denotes the complex conjugate and i, is related to the mother wavelet y by
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where l//(X) =[e""°x —e ? Je 2. The effective number of oscillations of the wavelet is

defined by ay. The inverse transform is given by
s)=k, D D ¥ (X)Spn- (10)

When modelling the induced current the derivative OE,, /0x;in Eq. (7) is calculated by

taking the derivative on the envelop function of the wavelet given by. Modelling the upshift
with FEM codes for the fast magnetosonic wave requires that the wave field is decomposed
into wavelets in the poloidal direction on each flux surface. As an initial approximation the
current density obtained from a hot dielectric tensor with kj = ny/R can be used with

k | perpendicular to the flux surfaces. Note the MPE can be initialized by using a few initial

current distributions obtained e.g. from different k; values in the dielectric tensor.
Modelling slow kinetic waves requires wavelet decomposition both in the poloidal
direction and across the magnetic surface where the current distribution has to be resolved

within a gyro orbit.
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