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Introduction.

In all stellarator and heliotron devices, a non MHD-driven plasma density limit appears that
depends on the absorbed power density and the magnetic field [1]. The dominant
mechanism that limits the maximum attainable density in steady state is the thermal
collapse. As in the case of reverse field pinches (RFP) and opposite to tokamaks, no current
disruption can occur when the thermal collapse develops and, moreover, the plasma can
restart if the auxiliary heating is maintained. Depending on plasma composition, thermal
instabilities may originate at some point of the plasma column and easily provoke radiative
collapses. The use of wall conditioning techniques with low-Z (C, B or Li) materials or
divertors [2, 3] to reduce the average impurity radiation strength, and the injection of pellets
to centrally fuel the plasma, led to notable extensions of the density limit. These facts
reinforce the common belief that the density limit is also an edge phenomenon, as in
tokamaks and RFPs. In TJ-II, a medium-size flexible heliac with moderate heating power
capability (< 2.6 MW), the main action to control and increase the electron density has been
wall-coating with low-Z materials [4]. The change from boron to lithium walls yielded an
increment of a factor of two in t; and 1.6 in maximum electron density [5] at low input
power. During the last campaigns, further efforts to improve the plasma-wall interaction
have been done to produce more stable plasmas at full power and to widen the operative
magnetic configurations map. After the recent installation of one liquid lithium limiter
(LLL), a marked reduction of carbon impurities has been achieved, especially in plasmas
with strong interaction with the vessel walls.

In this report, an updating of TJ-II database is presented, bringing to the foreground the
magnetic configurations that yield the larger increments over the Sudo limit [1].

Operation domain.

TJ-1I is a four-period flexible Heliac with low magnetic shear and major and averaged
minor radii of 1.5 m and < 0.22 m, respectively [5], and operated at B=0.95 T. For this
study, plasmas of different magnetic configurations were started with electron cyclotron

resonance heating (ECRH) (Pi, = 600 kW, 2 gyrotrons, at 53.2 GHz, 2™ harmonic, X-mode
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polarization) and maintained with two tangentially injected neutral beams (co and counter)

delivering Pi, < 700 kW port through each. The considered ranges in the parameters of

interest are: input power density 0.33 - 1.55 MW/m™; average electron density 2 - 8 x10"

3; minor radius 15.0 - 19.3 x107 m; iotay;; 1.33 - 1.63, and plasma volume 0.67-1.1 m>.
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Figure 1. Diamagnetic energy versus line

average electron density for the studied  heating schemes for each shot are indicated in
discharges. The yellow rectangle represents the

last reported accessed operation region [5]. the legend.

1.7 in n, have been obtained. The different

Comparison of TJ-II data with scalings.
Data from TJ-II were considered in a comparative inter-machine analysis to build the

unified scaling law for the energy confinement time in stellarators, the ISS04 [6]:
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Figure 2. t¢ (exp) for NBI discharges vs. the inter- )
machine energy confinement time tg (ISS04) x 0.5. ATF/CHS/H-E, [see Table 3 in ref. 6]

seems to be corrected.
This is due to the fact that the negative effect of large ripple on transport is reduced for
large collisionality. In fact, the comparison with the Sudo scaling, as is shown in Figures
3a and 3b, is rather good. However, it is observed that Tt (exp) can surpass the limit for all

heating schemes, whilst n. (exp) seems to stay below the limit. Several plasma density
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Figure 3. Comparison of TJ-II data with Sudo limits [1] scalings: a) T (exp)
vs. Tg (Sudo) and b) n, (exp) vs. n (Sudo). Note: n.’s are in 10" m™ units.
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Figure 4. a) Experimental vs. scaling
values for a series of increasing
density. b) Shots parameter location
in the Sudo scaling map. ¢) Mirnov
spectra from four of the shots with
increasing density (1->4).

frequency (kHz)

a
3

100

1080

1100

1120
time (ms)

Best performance: re-starting discharges.

example, the behaviour
of a series of 15 shots
with increasing density,
ua)=1.65,

and 390 kW co-injected

configuration
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Figure 4. From densities
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this magnetic configuration
are prone to enter in H-
mode, characterized by an
increase of the confinement
time, likely due to the
reduction of the MHD

activity. It is seen that the
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N, /Mg, 18 kept < 1.

In many of the explored magnetic configurations and especially under high (Pin = IMW)

heating power, discharges that collapse at low densities can recover. Moreover, during the

second heating phase, the energy content and the average density increase in a factor of 2

and 3, respectively, whilst radiation only increases in a factor of 0.5 (see Figure 5a). The

emissivity profiles reveal the development of a radiative instability that begins at the edge

and propagates toward the core. Then, plasma cools down to <Te> = 40 eV, and the density

profile becomes strongly peaked, conditions rather adequate to optimize heating beams

absorption. During the reheated phase, the plasma core can reach densities of 1 x 10* m™,
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the profiles shape are the typical of the H-mode, the estimated Z can be as low as 1.2, and
the MHD activity in the whole plasma column is reduced with respect to H-mode.

Conclusions
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Figure 5. a) Time evolution of representative plasma parameters. b) Radial asymmetric fluxes.

evolution of emissivity for discharges that collapse twice. Inset: Emissivity

profiles at collapses and restarting times, marked with arrows. ¢) Mirnov ECH applied to co—injection
and bolometer spectra from shot #33527.

NBI or gas base dilution
with He does not help to increase plasma density. Although in this study the explored iota
range is rather narrow, our results suggest that the scaling dependence on that parameter
likely should be reconsidered.

MHD activity is strongly reduced approaching the maximum density, when the best
confinement is obtained, probably due to the reduction of ion radial orbits for high
collisionality.

For absorbed powers < 1.55 MW.m>, in this ripple dominated device, the maximum
attainable density, seems to be still limited by thermal collapse.
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