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I. Introduction. It has been observed in the TJ-II heliac a close correlation between rational

surfaces and transport barriers as well as a persistent MHD activity that has a dynamical evo-

lution [1]. Rational surfaces are usually the locus of magnetic island formation because the

magnetic perturbations are resonant there; therefore it is the most likely region for the origin

of the observed MHD activity. On the other hand, transport barriers are commonly associated

with the presence of sheared flows which, in the case of the TJ-II experiments, would appear at

or around the magnetic resonant surfaces. A possible sequence of events that may explain the

observations in TJ-II is that the non-ambipolar transport processes in the vicinity of a rational

surface give rise to a sheared radial electric field which reduces the anomalous transport creat-

ing a barrier. Then the magnetic island that may be present at the resonant surface is affected by

the sheared flow according to the stability properties of the tearing mode. The island evolution

is observed as MHD activity and may disrupt the transport barrier. Here we study the stability

of the magnetic islands under the influence of the sheared flow around them. We start with the

island of the vacuum magnetic field at a low order rational surface and analyze the effect of the

plasma through the polarization drift on the stability parameter ∆′, which determines the nonlin-

ear evolution of the island width. ∆′ depends on the velocity profiles near the island separatrix

which are calculated from a neoclassical transport model that contain the shear.

II. Island dynamics with shear flow.

The qualitative picture for the events in TJ-II is that the islands enhance the electron radial

transport thus creating a larger radial electric field across the island and the resulting sheared

flow creates a transport barrier. This flow modifies also the stability and dynamics of the island.

There are also fast particles detected at the wall, which may arise during the reconnection pro-

cess or as a result of the inductive parallel electric field due to island motion. To study island

stability at a rational surface, the tearing mode evolution has to be considered, including the

presence of shear flows. An important effect to take into consideration when the island width

is as small as the ion Larmor radius is the polarization drift. This effect is important when the

island begins to grow and it has been variously described in the literature with some discrepan-

cies as explained in [2]. The relevant effect that determines the contribution to the growth is the

velocity profile across the island.
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Magnetic islands in stellarators often appear even in the vacuum field at rational surfaces

due to small coil errors. We consider then the evolution of a vacuum magnetic island under

the action of plasma response in presence of a sheared E×B flow. The equilibrium magnetic

field is B = ∇ψ ×∇θ + ι(ψ)∇ζ ×∇ψ . The perturbed magnetic field is B̃ = ∇ψ̃ ×∇ζ and a

vacuum island at the rational surface ι = n/m is represented by a single harmonic approximation

ψ̃v = ψv0 cos(mα +∆φ), in terms of the helical variable α = θ − (n/m)ζ and a phase ∆φ , from

which the helical flux function that describes the island surfaces is ψ∗ = ι ′x2/2−ψv0 cos(mα)

(x = ψ −ψs is a local radial coordinate). The island has a width w = 4
√

ψv0/ι ′ψ ′. Then, in

presence of plasma the island structure may be modified in amplitude and phase, so it can be

represented by ψ̃ = ψ0 cos(mα) with the width w = 4
√

ψ0/ι ′ψ ′. The usual treatment is to

separate the solution of the equations in a narrow region around the rational surface and an

external region where ideal MHD is used, and then match the solutions. The external solution

is singular at the rational surface with a discontinuity in the derivative of ψ denoted by ∆′. The

constraint imposed by the external coils enters through a boundary condition term as ∆′+∆′BC

and the matching condition can be split in sine and cosine terms as∫
dx

∫ dα

π

∫ dζ

2π

√
g

|∇ψ|
J‖Bcosmα = ∆

′
cψ0,

∫
dx

∫ dα

π

∫ dζ

2π

√
g

|∇ψ|
J‖Bsinα = ∆

′
sψ0

where ∆′c = ∆′(1− kv
ψv0
ψ0

cos∆φ), ∆′s = ∆′kv
ψv0
ψ0

sin∆φ and J‖ is current parallel to the B-field

in the inner region. Separating the inductive part of J‖ (using Ohm’s law η−1∂ψ/∂ t), the first

condition leads to the equation for the island width evolution

dw
dt

=
ρ2

s
τR

(∆′c +∆pol) where, ∆
′
pol =

∫ dx
ψ0

∫ dα

π

∫ dζ

2π

√
g

|∇ψ|
JpolBcosmα. (1)

On the other hand, the sine contribution gives the flux-surface averaged electromagnetic torque

[4] due to the action of the exterior region through the error field

NEM =
∫

dx
∫ dα

π

∫ dζ

2π
α̂ ·J×B

√
g

V ′
=

2π2ψ ′

µ0bt
mψ

2
0 ∆
′
s (2)

Thus, the sign of ∆′pol determines if the shear flow is destabilizing (∆′pol > 0, island growth)

or not; while the torque competes with the viscous torque given by neoclassical viscosity to

determine the rotational state of the island. In order to know this effects it is necessary to obtain

the noniductive parallel current solving the transport problem. The combined action of the two

effects may lead to the following sequence of events: the island grows due to shear flow and

as it grows the viscous torque increases making the island rotate with the flow, which in turn

reduces the shear in the vicinity of the island.

The first thing is to determine the E×B plasma velocity in the inner region starting from

the ion momentum balance equation in steady state: J×B−∇ · P = 0. The stress tensor is

41st EPS Conference on Plasma Physics P2.083



P = pI+Π. This is averaged over the helical flux surfaces described by ψ∗ that define the

island structure

−ψ ′

ι ′
〈J ·∇ψ

∗〉I−〈α̂ ·∇ ·P〉I = 0

requiring charge neutrality across island flux surfaces 〈J ·∇ψ∗〉I = 0 and using 〈α̂ ·∇ ·P〉I =

−ψ ′∑s qsΓ
ψ∗
s the ambipolarity condition results

Γ
ψ∗

i (E) = Γ
ψ∗
e (E). (3)

The helical flux surface average is defined as 〈 f 〉I = (dψ∗/V )
∫

dζ
∫

dα
√

gI f and thus the

transport described represents flows across the island. Here Γ
ψ∗
s are the cross field fluxes that

are assumed to have the same dependence of the neoclassical radial fluxes with just different

values of the coefficients. So we can use, for instance, Kovrizhnykh’s analytical model which

interpolates across collisionality regimes [5].

The solution of Eq. 3 gives the ambipolar electric field which in turn yields the E×B plasma

velocity in the direction of α , vα . There are in general multiple solutions for E but for the model

in [5] a cubic equation results which has been found to have a single root that changes from the

electron root (E > 0) at low density to the ion root (E < 0) for high n [6]. This sheared flow

can give rise to turbulence suppression with the consequent formation of a transport barrier.

This flow enters in the friction term ∇ ·P and drives a perpendicular current that, according

to momentum balance equation, is J⊥ = c
B2 B×∇ ·P. This current creates a parallel current in

order to maintain the quasineutrality condition ∇ · J = ∇⊥ · J⊥+∇‖J‖ = 0, which is the one

responsible for the island evolution in eqs. (1), (2).

III. Island evolution.

The evolution of the island width w due to the polarization drift can be written as

dw
dt

=
ρ2

s
τR

[∆′+gω(ω−ω∗i)]

where g depends on the velocity profile and its sign determines the stability. Depending on the

frequency range, it can be stabilizing or destabilizing [2]. The asymmetry in the velocity profiles

due to shear flow determines the stability; as shown in [3] the shear contribution is stabilizing

for low and high shear but it destabilizes the mode for intermediate values of the shear. This may

lead to oscillations of the island width. According to Connor et al. [2], for w≤ ρi, g∼ ω−ω∗e

giving
dw
dt

=
ρ2

s
τR

∆
′+

4I

τRk2v2
aw

L2
s (ω−ω∗e)(ω−ω∗i). (4)

where I > 0 is a coefficient that depends of the density profile. This produces a polarization

contribution that is destabilizing for frequencies larger than ω∗e. The island rotation velocity in
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the plasma frame, is determined by the electron or ion diamagnetic velocities as: ω = f ω∗e +

(1− f )ω∗i, where f is the flattening parameter that measures the degree of temperature profile

flattening inside the island. f = 1 means there is no flattening. Since in TJ-II NBI plasmas there

is no flattening detected during off-axis sawteeth, one would expect ω ≈ ω∗e. This would give

∆′pol ≈ 0 for for TJ-II, so that the island should be stable (if ∆′ ≤ 0) in the frame of reference

where Er = 0. Moving to a frame with Er =−3 kV/m, Eq. 4 predicts there can be instability for

frequencies outside the range 0 < ν < 20 kHz for a resonance 8/5 near the edge, for NBI plasma

of moderate density. The corresponding growth rate is of order 105s−1 when I/(kW )2 ∼ 1. This

seems to be consistent with the experimental data.

On the other hand, the viscous torque has been calculated in [4] finding (with no cross-field

viscosity)

NV =−2eV ′√
6

wΓi
vα

vα − vα,amb,i

which is proportional to the radially integrated neoclassical friction
∫

dx〈α̂ ·∇ ·P〉 ∼ w〈α̂ ·∇ ·

P〉 ∼ wΓi. This indicates that as the island grows the torque gets larger and the torque balance

NEM +NV = 0 cannot be maintained for large enough w. Then the island is dragged across

the plasma, balancing the flows on both sides, that is, the shear flow is reduced. Therefore, the

transport barrier can disappear. At the same time, the island rotation produces eddy currents

at the rational surface which produce magnetic activity as observed in TJ-II around rational

surfaces.

For a selfconsistent evolution of the island width and frictional drag the radial electric field in

the island should be solved and used to compute the parallel current, which would then give ∆′pol

and NV . Here a first approximation was developed assuming that the fluxes are aproximated by

their neoclassical expressions.
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