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Introduction

The interaction of ultraintense lasers with atomic or molecular clusters leads to the formation

of approximately spherical nanoplasmas [1] composed by 102 ÷ 104 ions and electrons. These

plasmas expand into vacuum [2], ranging from quasi-neutral plasma expansion to pure Coulomb

explosion [3]. In any case, Vlasov-Poisson kinetic model is considered the rigorous way of

studying this phenomenon [4]. In fact, kinetic theory applies to systems with an extremely large
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Figure 1: Time evolution of the fraction of electrons
inside a cluster of radius R = 2.28 nm obtained with
the Vlasov-Poisson model. In the calculations, N0 =
500, Np = 100 (dashed line), 5 ·103 and 5 ·105 (full
lines) and M = 103.

set of particles, while nanoplasmas are com-

posed by a number of particles that ranges

from some hundreds to few thousands. Can

the standard kinetic theory be adopted in

this case? To answer this question, a partic-

ular physical problem is considered here: the

charging transient that occurs at the begin-

ning of the cluster expansion. More specifi-

cally, the dynamics of a spherical nanoplasma

is studied, in which ions are immobile

and uniformly distributed while the initial

distribution of electrons is assumed to be

Maxwellian. These nanoplasmas are weakly

coupled and, consequently, collisions do not

seriously interfere with phenomena occurring

on a time scale of the order of the inverse of the plasma frequency. For the physical situations

examined here, the ratio between the electron collision frequency and the electron plasma fre-

quency is in the range 3 · 10−2÷ 10−3 (for temperatures of the order of 102 - 103 eV). In the

work, reference solutions for the Vlasov equation are compared with results obtained by solving

the exact equations of motion for the real set of interacting particles, for which ensemble aver-

ages have been utilized in order to take into account the different initial positions and velocities.
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Reference solution of the Vlasov-Poisson model
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Figure 2: Time evolution of the fraction of electrons in-
side a cluster of radius R = 2.29 nm with the N-body
simulations. In the calculations N0 = 103, n = 1028 m−3,
T = 103 eV and M = 250. Ensemble average (full line),
single calculations (green) and standard deviation range
(dashed lines) are reported.

Reference solutions of the Vlasov-

Poisson model are here obtained by us-

ing a particle-based, gridless algorithm,

the shell model [5], developed by the

Authors. By resorting to the spherical

symmetry of the system, a purely ra-

dial electric field is calculated and the

collisionality is strongly reduced with a

reasonable number Np of computational

particles, so reducing considerably the

computational time. In the calculations,

initial positions and velocities xi0,vi0 of

the computational particles are assigned

by using pseudorandom numbers, con-

sidering that electrons are uniformly

distributed in space inside a sphere of

radius R and with a Gaussian distribution in the velocity space with a variance vth = (kBT )1/2.

The electron dynamics is simply described by the following equations

dxi

dt
= vi,

dvi

dt
=− e

m
E(ri, t), i = 1,2, ...,Np (1)

The electric field E(ri, t) is calculated assuming that each computational particle behaves like a

spherical shell of radius ri. With this assumption, E(ri, t) depends on the total charge due to the

shells located at r ≤ ri

E(ri) = Eion(ri)−q
[N(ri)−1/2]

r2
i

er, Eion(r) = eN0min
(

r
R3 ,

1
r2 ,

)
er (2)

where q is the charge of each computational particle and N(ri) the number of computational

particles located inside a sphere of radius ri. The hypothesis of spherical symmetry of the elec-

tric field, which is exact in the limit of Np → +∞, reduces considerably the collisionality, as

point-like particle interactions are excluded. Moreover, the calculation of the electric field is

extremely fast. The solution of the Vlasov equation is obtained as the limit for Np → +∞.

This is clearly shown in Fig. 1, in which the time evolution of the fraction of electrons inside
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Figure 3: Time evolution of the fraction of electrons
inside the clusters for N0=20, 100, 500, 103, 5·103,
104, n = 1028 m−3 and T = 103 eV. The exact so-
lutions (dashed lines) are compared with the ones
obtained with the Vlasov model (full lines).

composed by Np = 100, 5 · 103 and 5 · 105

computational particles is considered. The re-

sults obtained for Np = 5 · 103 and 5 · 105

are practically indistinguishable, showing the

convergence of the method to the solution of

the Vlasov equation. This convergence study

on the number Np of computational particles

has been verified for each result here pre-

sented.

N-body simulation of the electron dynam-

ics

An accurate solution of the expansion of

electrons is obtained solving numerically the

system of equations of motion where the

Coulomb force acting on each electron is due to the uniform positive charge of the immobile

ions and to the exact contribution of the other electrons:

dxi

dt
= vi,

dvi

dt
= ∑

j 6=i

e2

m
xi−x j

r3
i j
− e

m
Eion(ri) (3)

The electron velocities {vi0} are initially distributed according to the Maxwell-Boltzmann dis-

tribution while the space distribution {xi0} is uniform. Moreover, ensemble averages have been

obtained considering M calculations in which initial conditions of electrons change by using

pseudorandom numbers. Any macroscopic quantity of the system P(α) calculated at time t

will be a function of the α-th set of initial conditions {x(α)
i0 },{v

(α)
i0 }, and ensemble averages

and variances are estimated as

P(t) =
1
M

M

∑
α=1

P(α), σ2
P(t)' 1

M−1

M

∑
α=1

[
P(α)(t)−P(t)

]2
(4)

The standard deviation σP shows dispersion of P(α) values from the average and one can say

that a significative number of P(α) lies in the interval
[
P−2σP ,P +2σP

]
. The ensemble

average P converges to the expected value 〈P〉 as M−1/2, being σ̂M =σP/
√

M an estimator of

the statistical error of P which lies in the interval [〈P〉− 2σ̂M, 〈P〉+ 2σ̂M] with probability

0.95. Figure 2 shows the time evolution of the ensemble average of the fraction of electrons

inside the cluster of radius R = 2.88 nm (N0 = 103, n = 1028 m−3, T = 103 eV, εp = 3 ·10−3),
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obtained solving the equations of motion with M = 250 different initial conditions; in the figure,

the interval [P−σP , P +σP ] is also reported along with all the corresponding results of the

M calculations obtained with different initial conditions.

Comparison between Vlasov-Poisson model and N-body simulation

Examples of the expansion of nanoplasma in the initial stage, in which only electrons are

involved, are presented and discussed, comparing results obtained with a N-body simulation

with the corresponding reference solutions of the Vlasov-Poisson model. Clusters with n= 1028

m−3, N0= 20, 100, 500, 103, 2·103, 5·103, 104 electrons and temperatures T = 102,103 eV

have been considered (the radius of clusters R varies from 0.78 and 6.2 nm and the plasma

parameter between 3·10−2 (102 eV) - 3 ·10−3 (103 eV). In Figs. 3 and 4 the time evolution of
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Figure 4: Same as Fig. 3 , with N0=20, 100, 500,
5·103, T = 100 eV.

the ensemble averages of the fraction of elec-

trons inside clusters of radius R are repre-

sented for T = 102 and 103 eV for differ-

ent initial number of electrons N0. From the

comparison, one can observe that, in the col-

lisionless case, the charge transient exhibits

small-amplitude oscillations while in the "ex-

act" model the oscillations are damped and

the system reaches an equilibrium configura-

tion.

The results of the present work indicate that

nanoplasma dynamics should not be uniquely

analyzed by means of the collisionless kinetic

theory. In fact the collisionless kinetic model is in good agreement with the exact solutions of

the equation of motion, as far as mean values are considered; however, in a single experiment

the calculated value may differ significantly from the average.
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