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Observations of low frequency turbulent fluctuations in magnetized plasmas demonstrated

that under a wide range of parameters, these fluctuations contain a significant contribution from

coherent structures. Observations in the magnetized toroidal Blaamann plasma device at the

University of Tromsø, in particular, demonstrated that significant parts of the anomalous plasma

losses were due to irregular plasma bursts associated with large spatial scales comparable to the

minor radius of the device.
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Figure 1: Schematic illustration of the posi-

tions for data acquisition by the moving probe

in a cross section of the Blaamann torus. An

electric field component is obtained from the

potential difference between probes CH1 and

CH2 on the movable probe. Positions for data

acquisition are shown with small filled circles

along the x-axis.

A diagram of the experimental set-up is shown

in Fig. 1, where a movable probe-head is to the

right. The plasma is characterized by a radial elec-

tric field E0 which together with the confining mag-

netic field B gives rise to a E0 ×B/B2-rotation of

the plasma column as indicated by an arrow [1].

Using the movable probe we detect the fluctuat-

ing plasma density ñ and the x-component of the

fluctuating Ẽ×B/B2-velocity at selected positions

along the x-axis as indicated in Fig. 1. The data

are stored and used to construct the plasma flux

signal Γ(t) ≡ ñẼy/B. The average 〈Γ〉 gives the x-

component of the net plasma flux. The signal con-

tains a fluctuating component where the probabil-

ity density can be obtained empirically. The aver-

age 〈Γ〉 corresponds to a net flux out of the plasma

column for x < 0 as well as x > 0, see Fig. 1. In ad-

dition to the average, we characterize the probabil-

ity density by its lowest order averages, i.e. the mean-square fluctuation level σ2, the skewness

S, and the kurtosis K. As for many other cases [2, 3, 4] we find that also here there is a near

parabolic empirical relation between skewness S and kurtosis K, as shown in Fig. 2 for two

examples of discharges (argon and helium).
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Figure 2: Scatter plot for skewness and kur-

tosis obtained at the spatial sampling posi-

tions of the flux signal. Large filled circles re-

fer to the data for helium used in the present

study, while the small dots are for an argon

plasma. For reference we show the relation

K = S2 + 1 with a dashed line. The full line

shows the best fit for the helium data, K =

1.7S2 + 6.8. Negative S are found for x < 0,

positive S for x > 0, see also Fig. 1.

A simple, yet realistic, model is presented in

terms of a superposition of non-overlapping coher-

ent structures placed with random intervals. The

model predicts the probability density of the tur-

bulent plasma flux; in particular it includes a re-

lation between the skewness, S, and the kurtosis,

K, of the randomly varying flux. Although not ex-

act, this skewness-kurtosis relation has the form of

a parabolic variation K = aS2+b, where a and b are

constants to be fitted for any particular problem.

In its simplest version, the model contains two

signal levels only. We assume that the flux is “burst-

like”, i.e. it is either vanishing or it assumes a con-

stant positive value γ > 0 in a short time interval

∆τ . The time variation of the flux event thus has a

so called “top-hat” shape. The random process is

assumed to be time stationary, and the probability

for encountering a plasma burst at some position is

the same for all times. At some fixed spatial posi-

tion we assume the probability for observing a pulse to be α with 0 ≤ α ≤ 1. For a long time

record of duration T , we have α = µ∆τ where ∆τ is the duration of the pulse and µ ≈ 〈N〉/T

is the density of the flux-pulses in the record. Uncertainties due to end-effects can be made arbi-

trarily small by increasing T . Our analysis addresses the plasma flux signal, but the arguments

are readily applicable also for a density signal as discussed by other authors [2].

The probability density for the plasma flux in this basic model is

P(Γ) = (1−α)δ (Γ)+αδ (Γ− γ) , (1)

where the first term accounts for the cases where the flux vanishes, i.e. at times where no plasma

burst is intercepted at the selected position. For the case given by Eq. (1) we readily obtain

〈Γm〉 = αγm with m = 1,2,3, . . ., giving the average value 〈Γ〉 = αγ , the variance σ2 ≡ 〈(Γ−

〈Γ〉)2〉= α(1−α)γ2, the skewness S = α(1−3α +2α2)γ3/σ3 and kurtosis K = α(1−4α +

6α2 − 3α3)γ4/σ4, implying here the exact relation K = S2 + 1 for all α . For this particular

signal we have S = 0 when α = 1/2. It can be demonstrated analytically that K ≥ S2 + 1 for

any signal with σ 6= 0 so the present simple model represents a limiting case. For the simple
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two-level model it is not essential that all structures have the same duration, and we can have

∆τ to be statistically distributed.

The model Eq. (1) can be generalized by allowing for a general temporal form of the burst

event containing a random amplitude parameter A with some probability density PA(A). In prin-

ciple the amplitude can assume both signs even though the average is different from zero. Tak-

ing A as an amplitude factor we omit cases where the shape of the structure can depend on its

magnitude, but the analysis can be extended to include also such cases. We denote a general

pulse form by GA(τ) for 0 ≤ τ ≤ ∆τ and GA(τ) = 0 otherwise. We take ∆τ to be the same

for all pulses, irrespective of A. One example could be GA(τ) = Asinp(πτ/∆τ), where p is a

deterministic fitting parameter. In this generalization we find the flux probability density to be

P(Γ) = (1−α)δ (Γ)+
α

∆τ

∫ ∞

−∞

∫ ∆τ

0
δ (Γ−GA(τ))dτPA(A)dA . (2)

For the “top-hat” pulses assumed in Eq. (1) the amplitude probability density will be the same

as PA(A), but in general the two PDF’s are different.
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Figure 3: A parametric presentation of skew-

ness versus kurtosis (S(α),K(α)) with vary-

ing α for selected model pulses. The heavy

solid line gives the “top hat” model for ref-

erence, while the first heavy dotted line has

G(τ) = sinp(πτ/∆τ) with p = 1/4, the next

p = 1/2, the thinner dashed line has p = 1,

the next thin dotted line p = 2. A red line for

p = 4 will be almost indistinguishable from

this, but it starts for a slightly larger S-value.

Results for 〈Γ〉, σ2, S and K are readily ob-

tained by using Eq. (2). Analytically we find, for in-

stance, 〈Γm〉 = (α/∆τ)
∫ ∞
−∞

∫ ∆τ
0 Gm

A (τ)dτPA(A)dA.

The values of skewness and kurtosis follow approx-

imate parabolic relations for varying parameters for

a wide range of pulse shapes and basic statistical

distributions, see Fig. 3. We have taken all pulse

amplitudes A to be equal. If we allow for a statis-

tical distribution of A, we find that the curves retain

a parabolic form, but for a given S-value, the kurto-

sis is found to increase, in general.

The simplest statistical analysis concerns the

lowest order average quantities. These can be deter-

mined experimentally without requiring estimates

for the full probability density. For long data se-

quences as available in Blaamann, we can also ob-

tain acceptable estimates for the full probability

density of fluctuating quantities, the plasma flux in

particular. The model Eq. (2) allows the probability density to be obtained analytically, where

we show illustrative results in Fig. 4 for two parameter values. The result agrees well with obser-
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vations [1]. The model can be generalized to include an additive random noise component, and

a transition to a Gaussian random process can be demonstrated in the limit of large noise ampli-

tudes, where in particular the skewness-kurtosis relation degenerates to a point (K,S) = (3,0).

The primary effect of a small noise level is to smooth-out the cusp at the origin, see Fig. 4.
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Figure 4: Flux probability densities for sig-

nals constructed by a distribution of pulses

asinp(πτ/∆τ) with p= 2 (full line) and p= 4

(dashed line). The flux amplitude probability

density is exp(−(a− 〈a〉)2/σ2
a )/

√
πσ2

a . For

the cases shown here we used 〈a〉/σa = 0.35.

Our results differ from a previous study based

on correlated Gaussian density and velocity sig-

nals without structures present [5]. Although the

models are fundamentally different, also the corre-

lated Gaussian model gives a nearly parabolic re-

lation between skewness and kurtosis as in Fig. 2.

The flux probability density predicted by the latter

model appears similar to ours shown in Fig. 4, no-

tably by having a “cusp” at the origin and two asym-

metric “wings” for large positive and negative flux-

values. The Gaussian model implicitly assumes that

the anomalous transport is due to a random walk of

charged particles across magnetic field lines. Our

structure-based model assumes the transport to be

caused by random bursts of varying amplitude.
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