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Geodesic Acoustic Modes (GAM) [1, 2] correspond to finite-frequency zonal structures unique
in toroidal plasmas, which are capable of scattering microscopic drift-wave-type turbulence
(DW) including drift Alfvén waves into stable short radial-wavelength regime [2], and, thereby,
regulating the turbulence intensity and the associated wave-induced transports. Besides this
wave-wave interaction process, resonant wave-particle interactions with energetic particles, i.e.,
the so called energetic particle induced GAM (EGAM), has also attracted much research inter-
est [3, 4, 5]. Effect of energetic particles on the nonlinear interactions between DW and GAM
has also been discussed [5, 6]. In this work, we show that the nonlinear physics of GAM, includ-
ing both wave-wave and wave-particle nonlinearities, can be described by a unified theoretical
framework; which can be applied, in various limits, to study the nonlinear dynamics of the
GAM, DW and EP system, such as nonlinear self-regulation of DW via GAM excitation, and
EGAM nonlinear saturation due to wave-particle trapping.

I. Unified theoretical framework of GAM
The nonlinear GAM equations including both wave-wave and wave-particle nonlinearities

are derived from nonlinear gyrokinetic theory (equation (3) of Ref. [7]),

ωdDdAd = (c/B0)(Ti/Te)kθ Ad∂rAG, (1)

ωGεEGAMAG = (α/2)(c/B0)ρ2
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in which, subscripts d and G denote DW and GAM, respectively, α = 1+δP⊥/(en0δϕP) with
δP⊥ being the perturbed perpendicular pressure, A is the radial envelope; and −i∂r ≡ kr = nq′θk

represents the radial envelope wave vector. Dd and εEGAM are, respectively, the linear dielectric
functions of DW and EGAM, with the detailed expressions given in [7] and [4]. Here, we give
the expression of εEGAM explicitly; which is important for our discussion,
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εGAM is the linear GAM dielectric function accounting for the thermal plasma response [2].
We note that, in εEGAM, the EP drive term is formally linear, while the EP equilibrium distri-

bution function obeys the following renormalized nonlinear equation

−iω̄F̂0h = i
e2ω̂d

16
|δϕG(τ)|2

∂
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[
ω̂d(ω̄ − iγ)

(ω̄ − iγ)2 − (ω2
0r −ωtr)2

]
∂

∂E
F̂0h(ω̄ −2iγ)+F0h(0). (3)

Here, ω̄ denotes the slow time scale for F0h evolution from its initial value F0h(0), F̂0h is the
Laplace transform of F0h, and |γ| ≪ ω0r is the growth rate of δϕG. Equation (3) is of the form
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of a Dyson equation, and describes the evolution of F0h, due to emission and reabsorption of
EGAM. Note that, in deriving equation (3), only evolution in E needs to be taken into account
[9], since both Pϕ and µ are conserved.

This set of equations, i.e., equations (1), (2) and (3), describe the fully nonlinear evolution of
the GAM, DW and EP system, with multiple spatial scales due to system nonuniformities; such
as GAM continuum, DW nonuniformity, and EP radial profile [8]; and, thus, generally require
numerical solution. However, it becomes analytically tractable in some simplified limits. Here,
we will examine two such limits. In the first example, we will neglect the effects of DW, and
study the nonlinear saturation of EGAM. In the second limit, we will neglect effects of EPs, and
study nonlinear interactions between GAM and DW.

II. Nonlinear EGAM saturation due to wave-particle trapping
Nonlinear evolution of EGAM can be studied in the absence of DW. The linear theory of

EGAM [4] can be recovered neglecting the nonlinear evolution of F0h. Here, we focus on the
nonlinear saturation of EGAM due to wave-particle trapping, which has previously been dis-
cussed in [9]. Here, we will use a different approach and investigate the properties of the EP
phase space structures.

For resonant EPs, we have in equation (3), ω0r −ωtr ≃ −(∂ωtr/∂E|Er)(E −Er) and ω̂d =

ω̂d(Er). Let’s further neglect sources and sinks, and assume weak drive; i.e., |γ| ≪ |ω̄|. The
Dyson equation, equation (3), describing nonlinear EGAM evolution then becomes

F̂0h = β∂E
(
1/(ω̄2 −α2(E −Er)

2)
)

∂E F̂0h +(i/ω̄)F0h(0);

where, α = ∂ωtr/∂E|Er and β = e2ω̂2
d |δϕτ |2/(16). Taking ξ = E −Er, and Ψ = (1/(ω̄2 −

α2ξ 2))∂ξ F̂0h, the Dyson equation for F̂0h reduces to(
∂ 2

ξ + ω̄2/β −α2ξ 2/β
)

Ψ = (i/(2πω̄))∂xiF0h. (4)

The homogeneous equation can be written as Weber’s equation, and describes phase space
structure Ψ (or F̂0h) formation in the resonant particle frame. The “eigenmode" dispersion
relation in ξ or E, is then ω̄2 = βκ2, with κ defined as κ4 = α2/β . We then have |ω̄2| ∼
∂ωtr/∂E|Er

ω̂d|δϕ |; i.e., typical for wave-particle trapping (ω̄ ∼
√

δϕ ) [9].

III. Nonlinear interactions between GAM and DW in nonuniform plasmas
Neglecting the contribution of EPs, equations (1) and (2) describe the nonlinear interactions

between DW turbulence and self-generated GAM. We note that, the fully nonlinear two-field
equations, derived without separating DW into a fix-amplitude pump and a lower sideband with
much smaller amplitude, contain all the major nonlinear effects, and can be applied to investi-
gate the nonlinear saturation and turbulence spreading of DW turbulence due to GAM excita-
tion. Finite group velocities associated with kinetic dispersiveness and system nonuniformities,
such as GAM continuum and nonuniformity of diamagnetic drift frequency are self-consistently
taken into account, and could modify the parametric instability qualitatively.
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Figure 1: Logarithm of AG v.s. t for nonuniform ω∗(r) and pump.

A. Nonlinear excitation of GAM by DW in nonuniform plasmas
In this subsection, we focus on the absolute/convective nature of the parametric instability,

while the nonlinear saturation of DW will be discussed in the next subsection. Following [7]
and separating the DW into a pump wave and a lower sideband with a much smaller amplitude,
we recover the normalized coupled nonlinear equations of GAM and DW sideband [7]:(

∂t + iωP − iω∗(r)− iCdω∗ρ2
i ∂ 2

r
)

AS = Γ∗
0ÂG, (5)(

∂ 2
t +ω2

G(r)−CGω2
G(r0)ρ2

i ∂ 2
r
)

ÂG = −Γ0∂t∂ 2
r AS. (6)

Here, ωP is the real frequency of the pump DW, Cd and CG are O(1) coefficients; representing
the finite kinetic dispersiveness due to finite radial envelope variations and ÂG = ∂rδϕG/α with
α = i(αiωPTe/Ti)

1/2. Γ0 is the normalized radial envelope of DW pump that has a radial scale
length LP ∝

√
ρiLd from solving linear DW eigenmode equation, with a profile of ω∗(r) =

ω∗(1− (r− r0)
2/L2

d). There are three spatial scales in this problem; i.e., GAM continuum LG,
LP, and Ld with Ld ∝

√
ρiLd ≪ Ld ∼ LG ∼ a. The problem can be then solved order by order,

taking advantage of the scale separation.
On the short time scale, we may consider only a localized pump, and ignore the effects of

GAM continuum and ω∗(r) nonuniformities. The convective/absolute nature of the parametric
instability is then determined by the linear group velocities of GAM and DW sideband. For typ-
ical tokamak parameters, with CdCG > 0, we then have VdVG > 0, i.e., DW sideband and GAM
satisfying frequency and wavenumber matching conditions propagate in the same direction, and
the parametric instability is a convective amplification process, which is of less interest for fu-
sion research. The generated GAM and DW sideband are coupled together and propagate out of
the unstable region and, thus, can not effectively modulate DW. For cases with CG < 0 [2], we
have VdVG < 0, and the parametric process is an absolute instability. In the rest of this section,
we will focus on the more typical case with CG > 0.

Next, we consider the longer time scale, and take the nonuniformity of ω∗(r) into account,
while we neglect the contribution of GAM continuum in order to delineate the effect of nonuni-
form ω∗(r). Equations (6) and (5) are solved numerically, and the result shows that coupled DW
sideband and GAM wave packet are reflected at the turning points of DW induced by ω∗(r)
nonuniformity, and are amplified as they propagate through their original position r0 again. The
convective instability, as a result, becomes a quasi-exponentially growing absolute instability.

Finally, with all the nonuniformities self-consistently included, the coupled nonlinear equa-
tions (5) and (6), are solved numerically. The time histories of GAM amplitude at r = r0 is
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shown in Fig. 1, in which the solid curve corresponds to the nonuniform GAM frequency case,
while the dashed line illustrates the uniform GAM frequency case for comparison. One notes,
that the two cases are qualitatively similar, i.e., the nonuniformity of ω∗(r) is the dominant ef-
fect on the longer time scale, which renders the initially convective parametric instability into
a quasi-exponentially growing absolute instability on a longer time scale. On the other hand,
GAM continuum plays a relatively minor role here. Due to the frequency mismatch induced by
spatially varying ωG(r), the case with nonuniform ωG(r) has a slightly different growth rate.
B. Nonlinear saturation of DW due to GAM excitation

In this subsection, we study the nonlinear saturation of DW due to GAM excitation by nu-
merically solving equations (1) and (2), without separating DW into pump and sideband. For
the simplicity of discussion, we ignore linear drives and dampings of DW and GAM, and study
the nonlinear evolution of a given DW envelope solved self-consistently from linear eigenmode
equation with nonuniform ω∗(r). Following the discussion of previous section, we ignore the
contribution of GAM continuum and focus on the CdCG > 0 case. Cd = 1 is fixed, and two
parameters, i.e., the amplitude of DW (Ad(t = 0)) and CG are varied. We found that, the excita-
tion of GAM is determined by the competition between the nonlinear drive (parameterized by
Ad(t = 0)) and the dispersiveness due to linear group velocities (parameterized by CG).

The mode structure at t = 500 is shown in Fig. 2, where the dotted curve is the DW amplitude
at t = 0, dashed and dotted-dashed curves are respectively the real and imaginary part of Ad at
t = 500, and the solid curve is AG at t = 500. One notes that, at t = 500, GAM generation is
maximized at r ≃±25, where the gradient of Ad is maximized, and DW turbulence spreads due
to generation of GAM. The energy of DW and GAM are qualitatively represented by

∫
dr|Ad|2

and
∫

dr|AG|2, and their changes with time are shown in Fig. 3. The increase of
∫

dr|AG|2, is
shown to be consistent with the decrease of

∫
dr|Ad|2. DW is saturated at t > 700.
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Figure 2: mode structures at t = 500
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Figure 3: energy exchange between DW
and GAM
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