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1. Introduction. Some dangerous instabilities in tokamaks can be suppressed or at least
partially stabilized by a nearby conducting wall. The wall stabilization plays an important role
in the steady-state advanced scenarios developed for large tokamaks [1-4]. At the same time,
theory predicts that a ferromagnetic wall may act as a destabilizer [5-7], though its negative
effect cannot be dramatically strong at typical tokamak parameters. The most pessimistic

prognosis [5] was up to 20% reduction in the stability limit at 2 = w/u, =4, where u is the
magnetic permeability of the wall and g, is the vacuum one. This can be counteracted by the

stability control system [2] if properly accounted for in the feedback algorithms. The problem
should be considered in relation with experimental plans on the JT-60SA tokamak where
high- £ operation is expected in combination with the use of ferritic materials [4]. Here we
calculate the downward shift of the stability boundary of resistive wall modes (RWMs) in the
presence of a resistive wall with 2 >1. The analysis is based on the dispersion relation for

RWMs at u # u,, which is obtained [6] by solving the external task with linear plasma

response and hence can be coupled with any plasma model. This makes our approach
essentially different from that in [S] and more universal.
2. Formulation of the problem. We consider a cylindrical plasma surrounded by a coaxial

resistive ferromagnetic wall with radius 7, , thickness d, , uniform conductivity ¢ and
magnetic permeability u # 4, . The plasma-wall gap and space behind the wall are treated as a

vacuum. In this case, the dispersion relation for the external kink modes is [6, 8]
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where [ and K are the modified Bessel functions, y, = rw\/ﬁf and y, =y, (1+d, /r,).
This is derived for the (m,n) mode of the magnetic perturbation b depending on time as
exp(yt) with a growth rate ¥, assuming also nr, /(mR) <<1, where R is the major radius. The
parameter I’ is determined by the plasma properties [6] through the boundary conditions for

b, (the radial component of b) at the inner side of the wall, r =r, —0:
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L, =T, +m—-1-(rb,/b,)| )
with T =—2m the value of I, without plasma. In the analysis below, we consider ', and ¥
real as in [8]. For slow RWMs, viz. for yz, <r, /(d, f), Eq. (1) reduces to [6, 8]

L, =y, +; 3)

with 7 = y,0r,d,  and I’ <0 determining the stability threshold y = 0. Next we compare
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at various combinations of &, d /r, and m which are the key parameters here.

3. Computation results. It is clear that the downward shift of the stability boundary must

increase with @z from I', =0 at 22=1 to maxI, =0.5 at l=co. In between, for the m =2
mode at d, /r, =0.02 roughly corresponding to parameters of the DIII-D tokamak, Eq. (4)
gives I', =0.06, 0.14, 0.34 and 0.49 (or 12, 28, 68 and 98% of the maximal I', ), respectively,
for f1=4, 10, 100 and 1000. With a thicker wall, I';, is larger. The normalized shift I is
plotted versus 4 at several values of d, /r, in Fig. 1 and versus d /r, in Fig. 2. At =4 we
have I', =0.01, 0.06 and 0.27 for d,, /r, =0.002, 0.02 and 0.2.

It follows from (4) that dI', /de, <0, which means larger I at higher m and fixed

d,/r,. The dependence of I, on I for m =2 (solid), 4 (dashed) and 8 (dashed-dotted lines) at
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Fig. 1. Normalized shift I, of the stability boundary Fig. 2. Normalized shift I',, of the stability boundary

vs. [l for the m =2 mode at d,/r,=0.002,0.02,02 vs. dw/rw for the m =2 mode and ﬂ=2, 4, 10, 100

and oo, as indicated from bottom to top. and 1000, as indicated from bottom to top.
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d, /r,=0.002 (lower)and d,/r, =0.02 (upper set of curves) is plotted in Fig. 3, while Fig. 4
shows I',, for the same values of m, but versus d, /r, at I =2 (lower), 10 (intermediate) and
1000 (upper set of curves). At d, /r, =0.02 and 1 =4 Eq. (4) gives I', =0.11 at m =4 and
0.18 at m=8 (I'y, =0.06 at m =2), while with parameters relevant to the line-tied pinch
experiments [9] (d,/r, =0.002 and 2=1000) we have I';, =0.33, 0.40, 0.44 and 0.47 at

m=1, 2,4 and 8, respectively.
4. Discussion. For arbitrary plasma with a linear response to external perturbations the
downward shift of the stability boundary caused by the presence of a ferritic wall is described

by I, depending on &, d, /r, and m only and equal zero at g2=1. Larger I, means
stronger effect and vice versa. In a linear model, I', must be proportional to S for the
pressure-destabilized modes. The stability deterioration in S up to 20% for d, /r, =0.06 and
A =4 was stated in [5]. At these parameters Eq. (4) gives I', =0.15 for the m =2 mode and
Iy, =0.22 for the m=4. In [5], the calculations have been performed for a plasma with

parabolic current and pressure profiles. Being free from such constraints, our approach is more
general. Let us add that our results do not confirm the (unexplained) conclusion in [5] that, with
the permeability effect, the critical beta saturates or even decreases with the thickness of the
wall above a threshold value of the thickness. On the contrary, we have always dI, /de, <0 at
A>1andany d /r,.
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Fig. 3. Normalized shift FN of the stability boundary Fig. 4. Normalized shift FN of the stability boundary
Vs. fl for the modes with m1 =2 (solid), 4 (dashed) and vs. dw/ r, for the modes with m = 2 (solid), 4
8 (dashed-dotted lines) at d /7, =0.002 (lower set) (dashed) and 8 (dashed-dotted lines) at [1=2,10, 1000.
and dw /'r,, =0.02 (upper set of curves).
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Small I'y, at 1=2—4 are consistent with results on JFT-2M with no adverse effect on

plasma stability [10—12]. However, quite strong destabilization was observed in experiments on

the line-tied pinch at d, /r, =0.002, m=1 and £ =1200 [9]. This is also reproduced in our
model: in this case we obtain I, =0.35 (70% of the maximal shift).

The maximal possible I', =0.5 gives y7, =m at I, =0 (the stability boundary when
[ =1). The modes with such ¥ can be easily counteracted by feedback systems of modern
tokamaks [2, 13]. More dangerous is the increase of y by factorof 24 at I’ >r /d, [8].

S. Conclusion. The model predicts lowering of the stability boundary of RWMs with larger

wall permeability, especially combined with larger d /r, . It also shows that the stability

deterioration must be more pronounced for RWMs with higher m . This can be of interest
because the edge modes play an important role in some tokamak regimes. In the existing and

future tokamaks (say, at j1 =2 —4) the destabilizing effect cannot be strong, but closer look on
the problem may be needed in designing the high- # experiments on JT-60SA tokamak [3, 4].
On the Wisconsin rotating wall machine [9] it can be useful to compare the stability

deterioration with additional layers of the ferromagnetic foils until its saturation at I', =0.5. If

necessary, our analysis can be extended to the cases with two walls as considered in [7].
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