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1. Introduction. Some dangerous instabilities in tokamaks can be suppressed or at least 

partially stabilized by a nearby conducting wall. The wall stabilization plays an important role 

in the steady-state advanced scenarios developed for large tokamaks [1–4]. At the same time, 

theory predicts that a ferromagnetic wall may act as a destabilizer [5–7], though its negative 

effect cannot be dramatically strong at typical tokamak parameters. The most pessimistic 

prognosis [5] was up to 20% reduction in the stability limit at 4/ˆ
0 =≡ µµµ , where µ  is the 

magnetic permeability of the wall and 0µ  is the vacuum one. This can be counteracted by the 

stability control system [2] if properly accounted for in the feedback algorithms. The problem 

should be considered in relation with experimental plans on the JT-60SA tokamak where 

high- β  operation is expected in combination with the use of ferritic materials [4]. Here we 

calculate the downward shift of the stability boundary of resistive wall modes (RWMs) in the 

presence of a resistive wall with 1ˆ >µ . The analysis is based on the dispersion relation for 

RWMs at 0µµ ≠ , which is obtained [6] by solving the external task with linear plasma 

response and hence can be coupled with any plasma model. This makes our approach 

essentially different from that in [5] and more universal. 

2. Formulation of the problem. We consider a cylindrical plasma surrounded by a coaxial 

resistive ferromagnetic wall with radius wr , thickness wd , uniform conductivity σ  and 

magnetic permeability 0µµ ≠ . The plasma-wall gap and space behind the wall are treated as a 

vacuum. In this case, the dispersion relation for the external kink modes is [6, 8] 
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where I  and K  are the modified Bessel functions, µσγwi ry ≡  and )/1( wwie rdyy +≡ . 

This is derived for the ),( nm  mode of the magnetic perturbation b  depending on time as 

) exp( tγ  with a growth rate γ , assuming also 1)/( <<mRnrw , where R  is the major radius. The 

parameter mΓ  is determined by the plasma properties [6] through the boundary conditions for 

mb  (the radial component of b ) at the inner side of the wall, 0−= wrr : 
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inmmmm bbrm )/(1
0 ′−−+Γ=Γ      (2) 

with mm 20 −=Γ  the value of mΓ  without plasma. In the analysis below, we consider mΓ  and γ  

real as in [8]. For slow RWMs, viz. for )ˆ/( µγτ www dr< , Eq. (1) reduces to [6, 8] 

c
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with www drσµτ 0≡  and 0<Γc

m  determining the stability threshold 0=γ . Next we compare 
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at various combinations of µ̂ , ww rd /  and m  which are the key parameters here.   

3. Computation results. It is clear that the downward shift of the stability boundary must 

increase with µ̂  from 0=ΓN  at 1ˆ =µ  to 5.0max =ΓN  at ∞=µ̂ . In between, for the 2=m  

mode at 02.0/ =ww rd  roughly corresponding to parameters of the DIII-D tokamak, Eq. (4) 

gives =ΓN 0.06, 0.14, 0.34 and 0.49 (or 12, 28, 68 and 98% of the maximal NΓ ), respectively, 

for =µ̂ 4, 10, 100 and 1000. With a thicker wall, NΓ  is larger. The normalized shift NΓ  is 

plotted versus µ̂  at several values of ww rd /  in Fig. 1 and versus ww rd /  in Fig. 2. At 4ˆ =µ  we 

have =ΓN 0.01, 0.06 and 0.27 for =ww rd / 0.002, 0.02 and 0.2.  

 It follows from (4) that 0/ <∂Γ∂ wN ε , which means larger NΓ  at higher m  and fixed 

ww rd / . The dependence of NΓ  on µ̂  for =m 2 (solid), 4 (dashed) and 8 (dashed-dotted lines) at 

  

Fig. 1. Normalized shift NΓ  of the stability boundary 

vs. µ̂  for the =m 2 mode at =ww rd / 0.002, 0.02, 0.2 

and ∞, as indicated from bottom to top. 

Fig. 2. Normalized shift NΓ  of the stability boundary 

vs. ww rd /  for the =m 2 mode and =µ̂ 2, 4, 10, 100 

and 1000, as indicated from bottom to top. 
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002.0/ =ww rd  (lower) and 02.0/ =ww rd  (upper set of curves) is plotted in Fig. 3, while Fig. 4 

shows NΓ  for the same values of m , but versus ww rd /  at =µ̂ 2 (lower), 10 (intermediate) and 

1000 (upper set of curves). At 02.0/ =ww rd  and 4ˆ =µ  Eq. (4) gives 11.0=ΓN  at 4=m  and 

18.0  at 8=m  ( 06.0=ΓN  at 2=m ), while with parameters relevant to the line-tied pinch 

experiments [9] ( 002.0/ =ww rd  and 1000ˆ =µ ) we have =ΓN 0.33, 0.40, 0.44 and 0.47 at 

=m 1, 2, 4 and 8, respectively. 

4. Discussion. For arbitrary plasma with a linear response to external perturbations the 

downward shift of the stability boundary caused by the presence of a ferritic wall is described 

by NΓ  depending on µ̂ , ww rd /  and m  only and equal zero at 1ˆ =µ . Larger NΓ  means 

stronger effect and vice versa. In a linear model, NΓ  must be proportional to β  for the 

pressure-destabilized modes. The stability deterioration in β  up to 20% for 06.0/ ≈ww rd   and 

4ˆ =µ  was stated in [5]. At these parameters Eq. (4) gives 15.0=ΓN  for the 2=m  mode and 

22.0=ΓN  for the 4=m . In [5], the calculations have been performed for a plasma with 

parabolic current and pressure profiles. Being free from such constraints, our approach is more 

general. Let us add that our results do not confirm the (unexplained) conclusion in [5] that, with 

the permeability effect, the critical beta saturates or even decreases with the thickness of the 

wall above a threshold value of the thickness. On the contrary, we have always 0/ <∂Γ∂ wN ε  at 

1ˆ >µ  and any ww rd / . 

  

Fig. 3. Normalized shift NΓ  of the stability boundary 

vs. µ̂  for the modes with =m 2 (solid), 4 (dashed) and 

8 (dashed-dotted lines) at =ww rd / 0.002 (lower set) 

and =ww rd / 0.02 (upper set of curves). 

Fig. 4. Normalized shift NΓ  of the stability boundary 

vs. ww rd /  for the modes with =m 2 (solid), 4 

(dashed) and 8 (dashed-dotted lines) at =µ̂ 2, 10, 1000. 
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 Small NΓ  at 42ˆ −=µ  are consistent with results on JFT-2M with no adverse effect on 

plasma stability [10–12]. However, quite strong destabilization was observed in experiments on 

the line-tied pinch at 002.0/ =ww rd , 1=m  and 1200ˆ =µ  [9]. This is also reproduced in our 

model: in this case we obtain 35.0=ΓN  (70% of the maximal shift).  

 The maximal possible 5.0=ΓN  gives mw =γτ  at 0=Γm  (the stability boundary when 

1ˆ =µ ). The modes with such γ  can be easily counteracted by feedback systems of modern 

tokamaks [2, 13]. More dangerous is the increase of γ  by factor of µ̂  at wwm dr />Γ  [8]. 

5. Conclusion. The model predicts lowering of the stability boundary of RWMs with larger 

wall permeability, especially combined with larger ww rd / . It also shows that the stability 

deterioration must be more pronounced for RWMs with higher m . This can be of interest 

because the edge modes play an important role in some tokamak regimes. In the existing and 

future tokamaks (say, at 42ˆ −=µ ) the destabilizing effect cannot be strong, but closer look on 

the problem may be needed in designing the high- β  experiments on JT-60SA tokamak [3, 4]. 

On the Wisconsin rotating wall machine [9] it can be useful to compare the stability 

deterioration with additional layers of the ferromagnetic foils until its saturation at 5.0=ΓN . If 

necessary, our analysis can be extended to the cases with two walls as considered in [7]. 
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