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The neoclassical moment method is improved by increasing the accuracy of approximation to

the linearized Fokker-Planck collision operator. In this paper, we apply this improved method

to the calculation of ion flow velocity for a plasma with one impurity species.

Let us write the perturbed distribution function asfa1 =−(Iv∥/Ωa) f ′a0+ga in an axisymmet-

ric magnetic fieldB = I(ψ)∇ϕ +∇ϕ ×∇ψ, wherev∥ = B · v/B, Ωa is the Larmor frequency,

2πψ is the poloidal flux andϕ is the toroidal angle. Then, in the banana regime, the functionga

for trapped particles (λ > λc ) is identically zero, whereλ = (1−v2
∥/v2)/B andλc = 1/Bmax.

The analytic functionga for passing particles (λ < λc ) can be obtained from the solubility con-

dition by using some sort of approximation to the linearized Fokker-Planck collision operator

Cab( fa1, fb1).

We introduce the following approximate collision operator:

Cab( fa1, fb1)≃ νab
D (v)L ( fa1)+

3

∑
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wheref l
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ξ = v∥/v, L is the pitch-angle scattering operator, the deflection collision frequencyνab
D (v) =

νab[erf(v/vb) −G(v/vb)](va/v)3 with G(x) = [erf(x)− (2x/
√

π)exp(−x2)]/(2x2) and νab =

4πnbe2
ae2

b logΛ /(m2
av3

a), thermal velocityva =
√

2Ta/ma, andna andTa are the number den-

sity and temperature, andma andea are the mass and charge. Using this approximate collision

operator, we can obtain the distribution function for passing particles in the form

ga =
1
2
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whereσ = v∥/|v∥|, νa
D(v) = ∑bνab

D (v), ⟨·⟩ denotes the flux-surface average,
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with Ft = 1−⟨B3⟩2/⟨B2⟩⟨B4⟩. The functionKa1(v)≡ ⟨Bg1
a⟩ is determined by the equation

ft
fc
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with

∆t =
7
3

(
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)
, (7)

where ft = 1− fc, f̃t = 1− f̃c, f̄t = f̃t +Ft f̃c,

fc =
3
4
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f̃c =
15
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⟨
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and the functionKa3(v)≡ ⟨Bg3
a⟩ is approximately obtained from the relation

Ka3(v)≃
7
3

f̄t Ka1(v). (10)

The flow velocity is expressed in the form

ua = uaθ B− Ta

maΩa

(
p′a
pa

+
eaΦ′

Ta

)
R2∇ϕ, (11)

where the poloidal flowuaθ is written in terms of the functionKa1(v) as uaθ = (4π/3na)

×(1/⟨B2⟩)
∫ ∞

0 dvv3Ka1.

We next explicitly calculate the poloidal flows of primary ions and impurities. Let us expand

the functionKa1(v) in a series of the associate Laguerre polynomials of order 3/2 and retain

only the first and second terms:Ka1(v) ≃ (ma/Ta)⟨B2⟩v[uaθ − (2/5)qaθ/pa (5/2−v2/v2
a)] fa0,

wherepa = naTa and fa0 is the Maxwell distribution function. Inserting this expansion forKa1

into Eq.(6) and taking velocity moment with respect tov3 andv3(5/2− v2/v2
a) lead to a set

of coupled algebraic equations foruaθ andqaθ . From here, the subscriptsi andI represent the

primary and impurity ions. Assuming that the primary ions are in the banana regime and using

the smallness of the mass ratiomi/mI , we solve this coupled equations to find the poloidal flows
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and the thermal forces are defined byA1 = p′i/pi − (ei/eI )(TI/Ti)(p′I/pI ), A2 = T ′
i /Ti , A3 =

(ei/eI )(T ′
I /Ti), A4 = (TI/Ti)(ei/eI )(p′I/pI + eI Φ′/TI ). The parameters in (13) and (14) are

defined asα = nIe2
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The viscosity coefficients for primary ions are written as
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where the conventional viscosity coefficients are given byµi1 = ( ft/ fc)[
√

2+ α − log(1+
√
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in the plateau to Pfirsch-Schlüter regime are given by
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whereτII = 3
√

π/(4νII ),
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3
5
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ν I
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}
and f ⋆tI is obtained for a model

magnetic field with circular flux surfaces, i.e.,B = B0/(1+ ε cosθ). The impurity viscosity

coefficients in the banana regime are obtained in the form:
µI1
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 . (23)

Finally we show the normalized poloidal flows of primary ions due to the thermal forceA2 in

the model magnetic field with circular flux surfaces. The normalized flowsui2 for α = 0, 1 and

4 are plotted as a function of the inverse aspect ratioε in Fig. 1. The impurity ions are assumed

to be (a) in the plateau to Pfirsch-Schlüter regime and (b) in the banana regime. The normalized

flows obtained by the conventional moment method are lager than those by our method by up

to about 20 % in the range of intermediate aspect ratio. We also plot those conventional flows

by dotted curves in Fig.1.
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Figure 1: Normalized poloidal flowu2i versus inverse aspect ratioε. For comparison, the flows

obtained by the conventional moment method are also plotted by the dotted curves. The param-

eterν⋆I in (a) is defined byν⋆I = (16/3π)( ft/ fc)(1− ε2)Rq/(ε2vI τII ).
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