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Finite-aspect-ratio effects on neoclassical transport coefficients, revisited
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The neoclassical moment method is improved by increasing the accuracy of approximation to
the linearized Fokker-Planck collision operator. In this paper, we apply this improved method
to the calculation of ion flow velocity for a plasma with one impurity species.

Let us write the perturbed distribution functionfag = —(IvH /Qa) fly+ga in an axisymmet-
ric magnetic fieldB = 1 ()0¢ +0¢ x Oy, wherev| = B-v/B, Q, is the Larmor frequency,
2my is the poloidal flux an@ is the toroidal angle. Then, in the banana regime, the fungton
for trapped particles{ > A¢ ) is identically zero, wherd = (1— vﬁ/vz)/B andA¢ = 1/Bmax
The analytic functiory, for passing particlesA < A¢ ) can be obtained from the solubility con-
dition by using some sort of approximation to the linearized Fokker-Planck collision operator
Cab( fa1, fbl)-

We introduce the following approximate collision operator:
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¢ =v /v, £ is the pitch-angle scattering operator, the deflection collision frequq?ﬁﬁy) =
Vablerf(v/Vb) —G(V/Wp)](Va/V)2 with G(x) = [erf(x) — (2x//T)exp(—x?)]/(2x?) and Vg, =
4rmpezellogA /(mav3), thermal velocitya = /2Ta/Ma, andn, and T, are the number den-
sity and temperature, amdy ande, are the mass and charge. Using this approximate collision
operator, we can obtain the distribution function for passing particles in the form
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whereg =V /|v|, V§(V) = Y v8(v), (-) denotes the flux-surface average,
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Ga1 = % Can(Kat, Kor) +Cap(Kas, Ks) = Cap | -V a0>Q—beb0 (4)
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with R = 1— (B3)2/(B?)(B%. The functionKq (V) = (Bgl) is determined by the equation

f |B
SVB(V) Ky — %Cab Ka1, Kp1) — & %Cab Ka1,Kp1) = gcéb ( —vf, fbo) (6)

with
:g(ﬁf"ﬁﬂf?), 0
wherefi=1—fo, ff=1—f;, fi = fi + R f,
fom §<BZ> /OACW%;, 8)
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and the functiorKa3(v) = (BgZ) is approximately obtained from the relation
T —
Kag(V) ~ :_3 ft Ka_’l_(V). (10)

The flow velocity is expressed in the form

Ta p/a eaq)/>
Ua = UggB — a4 7)) ROg, 11
a ab maQa <pa Ta ¢ ( )

where the poloidal flonwuyg is written in terms of the functiofKa1(V) as uag = (411/3n,)
x(1/(B?)) 5’ dvVPKq.

We next explicitly calculate the poloidal flows of primary ions and impurities. Let us expand
the functionKy1 (V) in a series of the associate Laguerre polynomials of order 3/2 and retain
only the first and second termi§x; (V) ~ (Ma/Ta)(B?)V[Uag — (2/5)0ag/Pa (5/2 — V2 /V3)] fa0,
wherep, = naTy and fyg is the Maxwell distribution function. Inserting this expansion kg
into Eq.(6) and taking velocity moment with respectvtband v3(5/2 — v2/v2) lead to a set
of coupled algebraic equations fogg andqggg. From here, the subscript@&ndl represent the
primary and impurity ions. Assuming that the primary ions are in the banana regime and using

the smallness of the mass ratip/my, we solve this coupled equations to find the poloidal flows

Uig andu,g:
Uig |CT| 2l u
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and the thermal forces are defined By = pi/pi — (a/&)(Ti/T)(p|/p1), A2=T//Ti, Az=
(&/e)(T//T), As=(Ti/T)(a/ea)(p;/p +aP/T). The parameters in (13) and (14) are
defined azr = e’/ (nie?), &= (1/a)/m/m/(T/T)%?, &r=1-Ti/Ti, Bi=fliz— S+
(3/2)(fliz—331/2), B2 = (9s1/4+ %) flir + [15 — fliaflia, Bz = (3/2)(iafliz — f15) + (9s1/4+
S2)fliz, Ba=9fli1/4+ 3z + [liz—9s1/4—Sp, Bs = —5(a/Di) 2097 P,

Di = (ﬂi1+31)(ﬂi3—52)—(ﬂiz—gsi)z, (15)
D = (u|1+5)(u.3+\/§+§6>—m2(u.2+5c}5), (16)
5 = Dﬁl{uu(ulsﬂfu%é)—ulz(ulz+56T6>}, (17)
S = Dil{—(u|3+\/§+1755) [\/E(u|1+5)+1§’au|1+a5
+(\f2+17f’a>u.2(u.2+5&5)}, (18)
S = —Dilu|z(f2+1—255). (19)

The viscosity coefficients for primary ions are written as

i:lil Hi1 (Q?) 00
[.Nliz = Hi2 A (_éi:ig)m > (20)
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where the conventional viscosity coefficients are givenpby= (f;/f.)[v2+ a —log(1 +
V2)], piz = (fe/ fe)[-2v2—3a/2+ (5/2)log(1+ v2)] andpiz = (fi/fc)[(39/8)v/2+ 13a /4
—(25/4)log(1+ v/2)], and the matrix elements ofC; are calculated as followgC3)oo =
—(1087/63)v2+ (589/21) log(1+v/2), (C3)o1 = —(143/126)v/2+ (55/21)log(1+ v/2),
(C3)11 = (50923/504)\/2 — (1362584)log(1+ v/2). The viscosity coefficients for impurities
in the plateau to Pfirsch-Schliter regime are given by

1

Hi1
_ T“ 8m dVV—4V| (V) ftT f V2
Hiz2 | = n 3 V|2 14t /ftl 10

7 : (21)
Hi3 (\"7;2 - g) i



41%* EPS Conference on Plasma Physics P4.017

wherert) = 3\/7_T/(4VII ),

£ _§<(b'DB)2> Vv f*_3_7T52l 1
"T5 B viwvivy) T 16" Rqul(v)’

v (v) = vir {[erf(v/vi) = 3G(v/vi)] (i /v)* +8(vi /V)G(v/wi) +(8/3VT) 8}, vb(V) = vi
x {[erf(v/vi) — G(v/w)] (vi /v)®+ (4/3y/T)(Ti/Ti)8(vi /v)?} and f;} is obtained for a model

magnetic field with circular flux surfaces, i.8,= By/(1+ £cosf). The impurity viscosity

(22)

coefficients in the banana regime are obtained in the form:

Hi1 fip(a =0) ‘T 2/3

to | = | fiz(a=0) | + f—t?'a —2/3 |. (23)
cT

i3 fir(a = 0) 5/3

Finally we show the normalized poloidal flows of primary ions due to the thermal fgrae
the model magnetic field with circular flux surfaces. The normalized flgwkor a = 0, 1 and
4 are plotted as a function of the inverse aspect mtioFig. 1. The impurity ions are assumed
to be (a) in the plateau to Pfirsch-Schliter regime and (b) in the banana regime. The normalized
flows obtained by the conventional moment method are lager than those by our method by up
to about 20 % in the range of intermediate aspect ratio. We also plot those conventional flows

by dotted curves in Fig.1.
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Figure 1: Normalized poloidal flows; versus inverse aspect ragoFor comparison, the flows
obtained by the conventional moment method are also plotted by the dotted curves. The param-
eterv,, in (a) is defined by, = (16/3m)(f;/fc)(1— £?)Ra/(e2viTy)).
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