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The TEP momentum pinch originates from the fact that magnetic curvature can modify ac-

celeration of ions along the magnetic field, as can be appreciated from the modern nonlinear

gyrokinetic equation [1]. When the magnetic curvature, (b ·∇)b, changes its direction as one

moves from the low B field (bad curvature) side to the high B field (good curvature) side, the

variation of fluctuation amplitude along the magnetic field (a property of ballooning fluctuations

in toroidal geometry) can yield a net acceleration. This symmetry breaking mechanism due to

magnetic curvature [2], alongside the k‖-symmetry breaking due to the E×B shear responsible

for the residual stress [3], constitutes the unified “B∗- symmetry breaking” as discussed in [2].

We show that a careful treatment of geometric effects due to nonuniform B with nonvanishing

curvature yields a novel pinch mechanism for parallel angular momentum density.

The nonlinear electrostatic gyrokinetic equation with proper conservation laws in general

geometry is given by Eqs. (19), (21) and (22) of [1] :
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+
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·∇F +
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eiB∗
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and
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=− B∗

miB∗
· [ei∇〈〈δφ〉〉+miµ∇B]. (3)

Here, the gyrokinetic Vlasov equation, Eq. (1) is written in terms of the gyro-center distribu-

tion function F(R,µ,v‖, t), with µ ≡ v2
⊥/2B, and 〈〈...〉〉 denotes an average over the gyrophase.

B∗ is defined by

B∗ ≡ B+
mic
ei

v‖∇×b

We can derive the nonlinear evolution of the parallel momentum density per ion mass, nU‖ ≡

2π
∫

dµdv‖B∗Fv‖, by taking a moment of the nonlinear gyrokinetic equation, Eq. (1), or equiv-

alently of a conservative form of the nonlinear gyrokinetic equation (Eq. (24) of [1]):
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With the Mach number using the sound speed Ms ≡ U0
Cs

, we adopt an ordering kθ ρs >
a

qRMs, and

assume Ms < 1 so that we can ignore B ·∇nU2
‖ in comparison to B ·∇P‖. The pressure moments

are defined as usual. With these considerations, we can write a nonlinear evolution equation for

the parallel momentum, by multiplying Eq. (4) by v‖ and integrating over the velocity space, to

obtain

∂

∂ t
(minU‖) =−cb×∇δφ ·∇(

minU‖
B

)−
2cminU‖

B
b× (b ·∇)b ·∇δφ

−mic
ei

b×∇B ·∇(
P⊥U‖

B2 )−3
mic
ei

b× (b ·∇)b ·∇(
P‖U‖

B
)

−nieib ·∇δφ −b ·∇P‖. (5)

The 2nd term on the RHS of Eq. (5) originates from the magnetic curvature modification of the

parallel acceleration in Eq. (3). The last two terms are the origin of the E×B shear. This has

been known to produce a nondiffusive radial flux of the parallel flow and reviewed in [4]. The

physics of residual stress has been extensively discussed in [5]. Therefore, from this point, we

don’t keep these terms in this paper, which focuses only on the inward pinch driven by toroidal

effects.

In addition, as identified in [2], the 3rd and 4th terms on the RHS of Eq. (5) are responsible

for the geodesic curvature driven momentum flux which is subdominant to the standard E×B

fluctuation induced momentum flux. It is also obvious that these terms vanish in the cold ion

limit of Ti/Te→ 0. An expression related to the magnetic curvature in the second term on the

RHS of Eq. (5) can be expressed as

b× (b ·∇)b = (∇×b)⊥ =
b
B2 ×∇

(
B2

2
+4πP

)
(6)

using the MHD equilibrium condition 1
c J×B = ∇P. Note that in our previous works on mo-

mentum pinch in conventional high aspect ratio tokamaks [2], a low-β approximation has been

used dropping the last term proportional to ∇P. Then, Eq. (5) can be further reduced to

∂

∂ t
δ (nU‖) =−cb×∇δφ ·∇

(
nU‖
B

)
−2

cnU‖
B3 b×∇

(
B2

2
+4πP

)
·∇δφ (7)

The radial flux of angular momentum carried by fluctuating E×B flow is

ΠAng =

〈
∑
k

δ (MinU‖R)kδu∗Ek

〉

= MiR2

〈
∑
k

δ (nωφ )kδu∗Ek

〉
(8)
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From now, we use the angular frequency of toroidal rotation, ωφ = u‖/R, which is usually

a flux fluction as the main variable, With this in mind, Eq. (7) can be written in the following

form,
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Eq. (9) shows that the fluctuations in nωφ is not only driven by the radial gradient of nωφ ,

which eventually leads to a diffusive momentum flux, but also by the gradients of B3/R and of

P. We can further arrange it as follows:
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−1

δvr,k
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∂
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∂
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R
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From Eq. (9) and (10), we obtain the radial flux of angular momentum,

ΠAng,r/MiR2 =

〈
∑
k

δ (nωφ )δv∗r

〉
=−χAng

∂

∂ r
(nωφ )+V T EP

φ nωφ (11)

with the angular momentum diffusivity,

χAng =

〈
∑
k
(Reτk)|δvr,k|2

〉
, (12)

and the TEP pinch
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[
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R
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with Re(τk) = Re
(

1
−iωk+4ωk

)
.

An expression in Eq. (13) should be understood as a fluctuation intensity
(
∝| δvr,k |2

)
weighted

flux surface average. Therefore, assuming that the fluctuation amplitude peaks strongly at the

low field side, the final expression for the TEP momentum pinch satisfies the relation

V T EP
Ang /χAng =

(
R
B3

∂

∂ r

(
B3

R

)
+

8π

B2
∂P
∂ r

)
, (14)

where the expression can approximately be evaluated at the point of the low field side mid-

plane for a given flux surface. Of course, the minus sign expected for typical equilibrium B and

P indicates an inward pinch. Note that Eq. (14) reduces to our previous expression of −4/R in

the limit of high aspect ratio
(
B ∝

1
R

)
and low-β

(
p << B2

8π

)
[2]. Figure 1 illustrates the pinch

to diffusion ratio expected from typical equilibria of NSTX and VEST [7] spherical tori. We
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Figure 1: Pinch to diffusion ratio for typical equilibria of (a) NSTX (β = 0.11)and (b) VEST

(β = 0.04). The black lines correspond to our new result in Eq. (14). The red lines are −4/R

from Ref. [2].

also remind readers that the ∂P/∂ r term in Eq. (14) shows up when we convert the magnetic

curvature term (∇×b)⊥ contained in the B∗ term in the conservative modern gyrokinetics [1],

to b
B3 ×∇ · (B2

2 +4πP). Therefore, we should still consider it as a part of TEP momentum pinch

which originates from the magnetic field inhomogeneity. We also note that it’s total P, not Pi

which appears in an ITG-specific formula [6].
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