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1. Introduction 

One of the most important problems of tokamak-reactor is the problem of the critical 

density. Particularly, the thermal quench may initiate the discharge disruption. The periphery 

temperature falls down, thermal front achieves the magnetic surface q = 2, and initiate the fast 

MHD mode. The thermal equilibrium is analyzed in the present paper. The equilibrium 

description including SOL is performed. The stability of the mode m = 0, n = 0 is discussed. 

As it will be shown below the mode is stable for any possible equilibrium. 

 

2. Boundary condition 

 Boundary condition at the Last Closed Magnetic Surface (LCMS) is significantly two 

dimensional. Nevertheless, one dimensional approximation is used in many papers, and one 

dimensional boundary condition models two dimensional one. Two types of conditions at the 

LCMS are accepted in different papers. The simplest one T(r = a) = 0 is used [1-3]. More 

complex condition is proposed in papers [4-6], 
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Here  is the perpendicular heat conductivity, x = r / a, a is the radius of the Last Closed 

Magnetic Surface (LCMS), Ta = TLCMS is the temperature at radius of the LCMS.  

As it will be shown below one can receive the simplified boundary condition             

T(r = a) = 0 as a limit case of the small depth of SOL. 

One has to match the solution of the heat equation 
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inside LCMS and the solution in SOL. Here n and nI are the plasma and impurity densities 

respectively, and L is the radiation function.  The equation describing the heat flow in SOL 

takes the form 
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Inside SOL one can write 
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rH H  is supposed. The 

equation (3) may be rewritten as  
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with the boundary condition T( x = xw ) = 0, xw = rw / a.  The functions  and SOL are 

assumed to be constant. The standard model for radiation losses is used, 

 
1 0 10, if , and const, ifL T L T T   .                                                                           (5) 

Matching of the solutions at the points x = x (T1), x = 1, and x = xw one can find 
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Here 
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The temperature must increase with y. Hence, B1 > 0, and only one sign in the expression for 

B1, and only one solution are acceptable. Also, one can write 
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The left hand side of (7) is equal to the re-radiated power. The critical regime is related to the 

total re-radiated power equal to the total power input. Usually xw - 1 << 1, and total radiation 

losses inside SOL are small. Hence, one can put T(1) = 0. 

 

3. Critical equilibrium 

 As it is noted above T(x = a) = T (x = a) = 0 for the critical density. Equilibrium has 

been analyzed in the earliest papers (in particular, in [4-6]) solving the equation (2). For 

simplicity the heating source has been localized at the plasma center. 

 Multiplying equation (2) by dT/dy and integrating over y one can get 
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The function d
2
T/dy

2
 is positive, and one can find.  
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The   function L(T) decreases with the temperature rapidly [7] for light impurities. The upper 

limit in the integral may be replaced by the value T*. The critical density is defined by the 

condition 
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For example, for Carbon g 6.7∙10
-18

 erg
2
cm

2
s

-1
. Here the bremsstrahlung is ignored. 

 One has to compare the condition (10) and Greenwald’s limit nc ~ I [8]. The Ohmic 

heating power M is defined by the expression M = (I
2)/(a

2 
), where I is the total toroidal 

current,  and  is the plasma column resistance. The plasma resistance depends on the 

temperature, 


. Total energy balance yields 3nT/E = M. The energy confinement 

time is defined by the empiric scaling [9]  MnIAE 2~ . One can find 
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OH p~ ~ , 0q n I n     yields the critical density to be approximately proportional to 

the total current and looks like the Greenwald criterion, nc ≈ I
1.04

. 

 

4. Stability problem 

 The stability of the discharge based on the radiation model (5) has been investigated 

using boundary conditions T(1) = 0 ([1]), and (1) ([4,5,6,8]) respectively. Drake [1] has been 

shown the mode m = 0, n = 0 to be stable under the boundary condition T(1) = 0 using the 

simplest model for radiation losses. S. Deshpande [3] also has found the stability with the 

exponential function L(T)~exp(-T/T0) . It is shown below that the plasma is stable for more 

general radiation model. 

 As it well known the development of axially symmetric mode corresponds to the 

thermal disruption. The temperature perturbation T  is described by the equation 
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Here  is the growth rate,  = a
2
nnI/. The equation (11) coincides with the Schrödinger 

equation. The thermal equilibrium is stable if there is no energy level in the potential well. In 
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order to get the sufficient condition of the positive existence one can expand the potential 

well and to transform it into the rectangular potential box, 
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Usually the value T1 is small, T1 << T2 and one can put T1 = 0. The equilibrium is stable if 
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  . The instability cannot develop if the equilibrium exists. 

 

5. Conclusion 

 Two thermal equilibria in tokamaks are discussed. Thermal balance in SOL is 

included into consideration in the present paper. It is shown that only one thermal equilibrium 

exists. The critical plasma density is shown to be defined by the balance of the radiation 

losses and the power input. The condition of the thermal quench for Ohmic heating nc ≈ I
1.1

 is 

close to Greenwald condition, nc ≈ I. The thermal stability is investigated. It is shown that the 

equilibrium is violated earlier than the thermal instability appears. 
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