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1. Introduction

One of the most important problems of tokamak-reactor is the problem of the critical
density. Particularly, the thermal quench may initiate the discharge disruption. The periphery
temperature falls down, thermal front achieves the magnetic surface q = 2, and initiate the fast
MHD mode. The thermal equilibrium is analyzed in the present paper. The equilibrium
description including SOL is performed. The stability of the mode m = 0, n = 0 is discussed.

As it will be shown below the mode is stable for any possible equilibrium.

2. Boundary condition

Boundary condition at the Last Closed Magnetic Surface (LCMS) is significantly two
dimensional. Nevertheless, one dimensional approximation is used in many papers, and one
dimensional boundary condition models two dimensional one. Two types of conditions at the
LCMS are accepted in different papers. The simplest one T(r = a) = 0 is used [1-3]. More
complex condition is proposed in papers [4-6],
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Here « is the perpendicular heat conductivity, x = r / a, a is the radius of the Last Closed
Magnetic Surface (LCMS), T, = T cwms IS the temperature at radius of the LCMS.

As it will be shown below one can receive the simplified boundary condition
T(r =a) =0 as a limit case of the small depth of SOL.

One has to match the solution of the heat equation
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inside LCMS and the solution in SOL. Here n and n, are the plasma and impurity densities
respectively, and L is the radiation function. The equation describing the heat flow in SOL

takes the form
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Inside SOL one can write Q:ingﬁ. The equality H, =H, is supposed. The
o H;ox qox

equation (3) may be rewritten as
oT
OX?

with the boundary condition T( X = Xy ) = 0, Xw = rw / a. The functions x; and xso_ are

(KSOL): nn,L(T) 4)

assumed to be constant. The standard model for radiation losses is used,
L=0,ifT, andL, =const, if T <T,. (5)

Matching of the solutions at the points x = x (T1), x = 1, and x = x,, one can find

Tz%y2+BZy,y<ya; T=%y2+Bly+A;Azy§,ya<y<yl- (6)
Here
A=a’mly/x,, A =a'ml, /K, B =%/a’M’+A(A-A)y:—2AT,;
B,=B—(A-A), ¥Vi=X,—X, Ya=X, -1 M:—Kla(i—;

y=%1
The temperature must increase with y. Hence, B; > 0, and only one sign in the expression for

B,, and only one solution are acceptable. Also, one can write

(%~ %)k, =M (1—\/1— -
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The left hand side of (7) is equal to the re-radiated power. The critical regime is related to the
total re-radiated power equal to the total power input. Usually x,, - 1 << 1, and total radiation

losses inside SOL are small. Hence, one can put T(1) = 0.

3. Critical equilibrium

As it is noted above T(x = a) =T '(x = a) = 0 for the critical density. Equilibrium has
been analyzed in the earliest papers (in particular, in [4-6]) solving the equation (2). For
simplicity the heating source has been localized at the plasma center.

Multiplying equation (2) by dT/dy and integrating over y one can get

(d—TJ :C+an,]L(T)dT. (8)
dy 0
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The function d’T/dy? is positive, and one can find.

T(1)
dl=JM2_an, [ LT . €)
dy :

The function L(T) decreases with the temperature rapidly [7] for light impurities. The upper
limit in the integral may be replaced by the value T*. The critical density is defined by the

condition
T(@) T*
M? =Qnn, | L(T)dT , or nn, =M?*/Qyg, g:jL(r)dT (10)
T 0

For example, for Carbon g = 6.7-10*® erg?cm?s™. Here the bremsstrahlung is ignored.

One has to compare the condition (10) and Greenwald’s limit n. ~ | [8]. The Ohmic
heating power M is defined by the expression M = (1%p )/(ma? ), where | is the total toroidal
current, and p is the plasma column resistance. The plasma resistance depends on the

temperature, p= A; 7% Total energy balance yields 3nT/z= = M. The energy confinement
time is defined by the empiric scaling [9] 7. ~ A,1“n”M ™. One can find T = % I“n*MY7,

430 3(p-1)
and M ~1¥*n¥*  For the critical density nn, ~ M2 Ohmic scaling [10]

Top ~0°° -~ 1.%°.n", » =0 vyields the critical density to be approximately proportional to

the total current and looks like the Greenwald criterion, n. = |04,

4. Stability problem

The stability of the discharge based on the radiation model (5) has been investigated
using boundary conditions T(1) = 0 ([1]), and (1) ([4,5,6,8]) respectively. Drake [1] has been
shown the mode m = 0, n = 0 to be stable under the boundary condition T(1) = 0 using the
simplest model for radiation losses. S. Deshpande [3] also has found the stability with the
exponential function L(T)~exp(-T/To) . It is shown below that the plasma is stable for more
general radiation model.

As it well known the development of axially symmetric mode corresponds to the
thermal disruption. The temperature perturbation T is described by the equation

2 2
9T 75 %50 (11)
K, orT
Here yis the growth rate, & = a’nni/x.. The equation (11) coincides with the Schrodinger

equation. The thermal equilibrium is stable if there is no energy level in the potential well. In
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order to get the sufficient condition of the positive yexistence one can expand the potential

well and to transform it into the rectangular potential box,

L=LO%+L1, if T<T,; Lo—a(T—Tl),ile<T<T1+i; 0ifT>T,+2. (12)
1 a a

Usually the value Ty is small, T; << T, and one can put T; = 0. The equilibrium is stable if

7’ M?x,
2 2"
T.,a

nn, < The instability cannot develop if the equilibrium exists.

5. Conclusion

Two thermal equilibria in tokamaks are discussed. Thermal balance in SOL is
included into consideration in the present paper. It is shown that only one thermal equilibrium
exists. The critical plasma density is shown to be defined by the balance of the radiation
losses and the power input. The condition of the thermal quench for Ohmic heating n. ~ 1** is
close to Greenwald condition, nc = I. The thermal stability is investigated. It is shown that the
equilibrium is violated earlier than the thermal instability appears.
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