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Axially symmetric m = 0 magnetic islands are studied in a cylindrical plasma with longitu-
dinal magnetic field reversal. Applying 2D deformation on the equilibrium plasma boundary
results in the breaking of magnetic surfaces topology into chain of islands. Axially symmetric
equilibrium with islands are described by the Grad-Shafranov equation for the longitudinal flux
function with a periodicity condition in z.

It was shown in [1] that axially symmetric equilibria with toroidal field reversal satisfying the
Ohm’s law do not exist and some of symmetry-breaking (e.g. helical) is required. The ohmic
states are observed in 3D closed configurations as the self-organized helical reversed field pinch
(RFP) equilibria [2]. So the m = 0 islands are 3D objects in realistic toroidal configurations. To
model them in 2D we use force-free equilibria with a constant ratio between the current density
and the magnetic field, j = λB, across the plasma. In a cylinder it coincides with the Bessel
function model (BFM) with finite current density at the plasma boundary [3].

Plasma stability with a chain of m = 0 magnetic islands is investigated for high aspect ratio
RFP-relevant configurations. The unstructured grid MHD_NX code [4] is used to compute ideal
MHD stability of 2D axially symmetric equilibria with arbitrary topology of magnetic surfaces.

1 2D equilibrium and stability model The starting point in 2D modeling is force-free ax-
isymmetric equilibrium with the current density j = λB and prescribed plasma boundary oscil-
lating around the 1D cylinder with minor radius a, rb(z) = a−d cos(2πz/zp), and determined
by the parameters d,zp controlling the size of the resulting magnetic island in r and z directions
in case of field reversal. The choice of z-region consisting of p periods, 0 ≤ z ≤ pzp, produces
the chain of p islands. The values a = 1,d = 0.05,zp = 2 are mostly used below.

The 2D equilibrium magnetic field B = ∇ψ×∇θ + f ∇θ features the m = 0 island(s) in place
of field reversal for the cylindrical BFM magnetic field, Bz(r) = J0(λ r),Bθ (r) = J1(λ r) that
happens when λ r > 2.4. In the 1D case the flux function ψ is also known, ψcyl(r) = rJ1(λ r)/λ .
The boundary value of the cylindrical ψ is used in 2D modelling as the boundary condition
ψ(r,z) = ψcyl(a),r = rb(z) for numerical solution of the Grad-Shafranov equation
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with p′ ≡ d p/dψ = 0, f = λψ in the chosen force-free case. An increase of the value of λ

models a range of equilibria from "shallow" (2.4 < λa≤ 2.7, see Fig.1) to "deep" field reversal
shifting respectively the magnetic islands deeper into the plasma. The corresponding cylindri-
cal safety factor q = (rBz)/(RBθ ) = (2πrdψ/dr)/( f pzp) edge/axis ratio would change from

41st EPS Conference on Plasma Physics P4.042



qa/q0 = −0.14 when λa = 2.5 to qa/q0 = −2.26 when λa = 3.3. The axis value is given by
q0 = 4πa/(λ pzp).
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Figure 1. The magnetic surfaces with two m = 0 islands (left), color corresponds to the levels
of flux function ψ . "Shallow" field reversal, λ = 2.7. The corresponding cylindrical profiles
Bz,Bθ ,q (right).

Matlab packages were employed for unstructured triangular mesh generation and solving the
equation (1). The same mesh was used for the stability calculations.

The necessary changes in the MHD_NX code [4] were implemented to deal with the RFP
configurations. It concerns the regularity condition at the magnetic axis and periodicity condi-
tions in z. For the perturbed electric field~e we set the boundary condition on axis as~e= 0. There
are two options to set the periodicity conditions: either set e ·∇θ = 0 at the periodicity ends (due
to the ideal MHD condition e ·B = 0 and B ·∇r = 0 it gives also e ·∇z = 0 there) or directly
apply the periodicity on the unknowns in the nodes and edges at the ends of the computational
domain using additional Lagrange multipliers (provided that node positions in r are identical at
both ends). In the first case symmetric or antisymmetric in z solutions should be identified to get
the periodicity. Note that for the m > 0 case, when the complex amplitude of the electric field
emeimθ is solved for, the real and imaginary parts of em should be symmetric or antisymmetric
simultaneously. That is why the direct periodicity setting is more convenient and preferential
for the stability analysis.

2 Ideal MHD stability with islands Low-q RFP configurations are unstable against free
boundary m = 1 mode if conducting wall stabilization is not taken into account. However in
RFP experiments the plasma is close to the wall and the corresponding RWM modes are actively
controlled. The external m = 1 mode stability is hardly affected by the presence of islands
(Fig.2). In both cylindrical and 2D island cases the squared growth rate ω2/ω2

A = −0.64 with
the conducting wall at aw/a = 2 (the wall shape is similar to the plasma boundary), where
Alfvén frequency is defined as ω2

A = (ψmax−ψmin)
2/(a6ρ) . The wall position for marginal

stability of the m/n = 1/1 is about aw/a = 1.7. Note that the global m/n = 1/1 mode is stable
for the same equilibrium with p = 2 periods despite qa =−0.5 in this case.

In the proposed 2D formulation the longitudinal "toroidal" harmonics einz/(pzp) are coupled
unless the equilibrium is cylindrically symmetric. In the spectrum of the 2D eigenvalue problem
for a given poloidal wave number m = 1 along with the global m/n = 1/1 unstable mode there
are unstable modes with different n’s depending on the position of the corresponding resonant
magnetic surface near the plasma boundary. The global m/n= 1/1 mode seems to be decoupled
from the higher-n modes also in the case with islands, but for higher-n modes the coupling is
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more pronounced. However the growth rates of these modes localized near the plasma boundary
are about ten times lower than for the global modes.
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Figure 2. Comparison of the external m = 1 mode structures (conducting wall position at
aw/a = 2) for the equilibrium from Fig.1 but extended to p = 4 periods (lower) and the cylin-
drical case (upper), λ = 2.7, 0.58 ≥ q ≥ −0.25. The streamlines and arrow plots of plasma
displacement ξ projection onto (r,z) plane and contour plot of re ·∇θ (in plasma equals to
ξ ·∇ψ/r related to the normal displacement to magnetic surfaces) are shown.

The existence of islands brings a new m= 0 free-boundary instability: neither field reversal in
a cylinder nor the boundary distortion without reversal give the instability. The mode structure
of the external m = 0 island mode is shown in Fig.3 for the p = 2 period case. This is the most
unstable mode which is localized in the vicinity of island X-points with dominating n= p/2= 1
(ω2/ω2

A = −0.64). For the considered shallow reversal case there is also the second unstable
mode with dominating n = p = 2 (ω2/ω2

A = −0.36). The same modes with the same growth
rates are reproduced for p = 4 periods implying independence on the value of q.

The growth rate of the m= 0 island mode is not sensitive to the value of the safety factor q but
depends on the position of the field reversal with maximal growth rates taking place for shallow
reversal with the islands closer to the boundary. The squared growth rate scales approximately
linearly with the size of islands determined by the amplitude of the 2D boundary perturbation.
For the considered case with λ = 2.7 the growth rate of the m = 0 mode is comparable to that
of the global m = 1 mode with the wall at aw/a = 2. However the marginal position of the
conducting wall for the m = 0 island mode aw/a < 1.2 is significantly closer to plasma. In Fig.4
the most unstable m = 0 island modes are presented for two cases with deeper field reversal.

3 Discussion The appearance of the new m = 0 free boundary instability was demonstrated
in the 2D model of RFP configuration with m = 0 islands. The growth rate of this instability is
comparable to that for external m = 1 mode in the low-q RFP configuration but in contrast to
m > 0 modes does not depend on the value of safety factor. The growth rate increases and the
marginal wall position of the m = 0 island mode decreases with shear reversal position closer
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to the plasma boundary. More accurate numerical treatment would be needed to investigate
the cases with very shallow reversal 2.4 < λa < 2.7 which are potentially the most unstable
configurations.

The relevance of the obtained results to the intrinsically 3D helical reversed field pinch config-
urations with m = 0 islands [5] (with characteristic island size about half of that in the presented
2D cases) needs to be assessed.
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Figure 3. External m = 0 island mode structure (conducting wall position at aw/a = 2). The
equilibrium from Fig.1 with p= 2 periods: the most unstable mode with n= p/2 and ω2/ω2

A =

−0.64 (upper left), the second unstable mode with n = p and ω/ω2
A = −0.36 (upper right).

The most unstable mode with n = p/2 and ω2/ω2
A =−0.64 with p = 4 periods (lower).
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Figure 4. External m = 0 island mode structure with deeper reversal (conducting wall position
at aw/a = 2). The equilibria with p = 2 periods: the most unstable mode with n = p/2 and
ω2/ω2

A =−0.19 for λ = 3.0 (left), the most unstable mode with n = p/2 and ω/ω2
A =−0.05

for λ = 3.3 (right).
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