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1. Introduction. This task is related to evaluation of the forces on the conducting structures 

in ITER during plasma disruptions [1, 2]. In [1], an analytic approach has been proposed to 

calculate the wall forces produced by kink modes in tokamaks. The expressions have been 

derived within the thin-wall cylindrical model that is widely used in the resistive wall mode 

(RWM) studies, see explanations and references in [3–5]. In addition to the standard thin-

wall constraints, in [1] the toroidal current density zj  in the plasma was assumed constant. 

Also, the calculations there have been performed by using a truncated formula for the wall 

force. Later the result has been confirmed in [2]. 

 Here we include the term intentionally disregarded in the starting formula in [1] and 

prove that it should be retained in the case considered. Besides, we do not impose any 

restriction on the plasma parameters. Though in other aspects we follow the same route as in 

[1], the first improvement essentially changes the final result compared to those in [1, 2]. The 

second one extends the applicability range of the predictions by allowing realistic current 

profiles. Besides, our model allows for the mode rotation as another new element. 

2. Formulation of the problem. As in [1], we consider a cylindrical plasma with nearby 

resistive wall of radius wr , thickness wd  and uniform resistivity  . The plasma-wall gap and 

space behind the wall are treated as vacuum. The magnetic field is described as bBB  0 , 

where 0B  is the axisymmetric equilibrium field ( 0/0  tB ) and b  is the perturbation. The 

latter induces the eddy current Ej   in the wall, where E  is the electric field governed by 

t /bE . In the wall, the volume density of the force is 

bjBjBjf  0 .      (1) 

 Following [1], we take a radial component of the linear term and introduce 
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with integration across the wall. If the wall is geometrically thin ( ww rd  ), we have 
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This corresponds to Eq. (36) in [1]. We use it as a starting point. 

3. Calculation of the force. Here b  is the vacuum field at the wall surfaces. Therefore, 

 nrbmRb         (4) 

for a single-mode perturbation depending on the poloidal and toroidal angles   and   as 

)]exp(),(Re[  inimtruu c       (5) 

with different (complex) cu  at the opposite sides of the wall. Trivially obtained from b  

with   in the form (5), relation (4) does not need any comment except that it differs from 

(incorrect) equation (38) for b  in [1]. The consequences will follow. 

 With (4), Eq. (3) yields  
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where 0B  and )/( 00  RBrBq   are taken at the wall ( wrr  ), R  is the major radius. 

 Next we have to calculate the right-hand side of (6) and compare 1rf  with the result of 

[1]. For perturbations prescribed by (5), at mRnr   equation 02    gives us 
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in the plasma-wall vacuum gap with wrrx /  and amplitudes mB  and m . Then 

)()/1( wrcminc rbmib  ,      (8) 

where rb crc  /  is the complex amplitude of rb . Similarly we have )(  wrcoutc ribb  

just behind the wall, where www drr   is the outer minor radius of the wall, and 
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 Using this definition and complex notation introduced by (5) we obtain from (6) 
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where plq  is q  at the plasma boundary ( 2rq  in the vacuum) and plr  the plasma minor 

radius. Eq. (10) has the same structure as Eq. (40) in [1], but differs from it by the factor of 
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for perturbations with )exp( tuc   and  /www dr . Expression for 1g  here corresponds to 

Eq. (41) in [1] with definition of w  next to Eq. (31) there. Eq. (8) in [2] gives a different 1g . 

 The analytical model in [1] was developed for evaluation of the wall force dependence 

on current and wall resistivity. Equations (10) and (11) show that our model will give an 

essentially different dependence on w  at the same bK  as in [1].  

 In [1], the force is expressed finally through the radial component r  of the plasma 

displacement ξ . To move in this direction we use the consequence of (7) (see also [6]) 
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valid in the plasma-wall gap. This allows to transform (9) into  
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where m
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We introduced c  to facilitate comparisons with the models representing the perpendicular 

component of b  (fully described here by   in vacuum) as z , Eq. (20) in [1]. 

 Equation (13) can be used for any plasma. If it is assumed ideal as in [1], we have 

)( 0Bξb  , rr ξb  0B  and  

rcc ξnqmBm )(0         (15) 

at the plasma boundary. Note that a large multiplier 0B  is missing in similar Eq. (42) in [1].  

4. Comparisons and discussion. Up to now the ratio )(/)( wrwr rbrb   and the quantity m  are 

free parameters in our formulas. In [1, 2], a thin shell approximation has been used that 

requires continuity of the normal component of b  (here, rb ) at the wall. Then 01   and m  

is related to the growth rate   by (see [3–6] and the references therein) 

wm         with        /www dr .     (16) 

Combining this with (13) and the ideal-plasma relation (15), we obtain from (10) 
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This can be compared with Eq. (43) in [1] and Eqs. (7)–(9) in [2] for the same force. 
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 One can easily note the absence of wr  in the denominator of Eq. (43) in [1]. Another 

more serious disagreement of our expression (17) from the corresponding results in [1, 2] has 

deeper roots: it comes from the use of Eq. (4) here instead of Eq. (38) in [1] for )( wrb  

combined with disregard of )( wrb  in Eq. (36) there. Finally, this difference is quantified by 

the factor (11) with 11 g  varying with  , while 01 g  remains constant. 

 It follows from (17) that crf 1  monotonically increases with   from 01 crf  at 0 : 
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where max

1crf  is the maximal value of crf 1  (the saturation 

level achieved at w ). On the contrary, Eq. (43) in 

[1] shows non-monotonic dependence of the force on   

with a maximum at 1w . This was emphasized [1, 2] 

as a merit of the model, but actually is a mistake. That 

equation and our solution (18) are compared in Fig. 1. In 

[1] the dependence of sideways force on w  (dashed 

curve) was found to agree moderately well with the 

simulations. Fig. 1 shows that it should be considered as purely accidental because of strong 

disagreement of the correct result (solid curve) with the result from [1] obtained under 

unjustified simplifications. Let us note that Eqs. (7)–(9) in [2] give a finite force at 0 . 

5. Conclusion. In the model [1], the plasma pressure is zero, constjz   in the plasma, and   

is real. Here the plasma parameters are not restricted in any way and   can be complex (the 

latter allows the mode rotation). Also, we do not employ the thin-wall approximation in the 

main part of our calculations. With applicability range much wider than in [1] and without 

artificial constraints on b  used there, our model is more realistic and precise. We 

recommend it for numerical and experimental testing. 
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Fig. 1. The force calculated by (18) (solid) 

and by Eq. (43) in [1] (dashed curve) with 

the same normalization at 1 mn , 

5.0plq , 
plw rr 3 , 

wrR 3 . 
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