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1. Introduction. This task is related to evaluation of the forces on the conducting structures
in ITER during plasma disruptions [1, 2]. In [1], an analytic approach has been proposed to
calculate the wall forces produced by kink modes in tokamaks. The expressions have been
derived within the thin-wall cylindrical model that is widely used in the resistive wall mode
(RWM) studies, see explanations and references in [3-5]. In addition to the standard thin-

wall constraints, in [1] the toroidal current density j, in the plasma was assumed constant.

Also, the calculations there have been performed by using a truncated formula for the wall
force. Later the result has been confirmed in [2].

Here we include the term intentionally disregarded in the starting formula in [1] and
prove that it should be retained in the case considered. Besides, we do not impose any
restriction on the plasma parameters. Though in other aspects we follow the same route as in
[1], the first improvement essentially changes the final result compared to those in [1, 2]. The
second one extends the applicability range of the predictions by allowing realistic current
profiles. Besides, our model allows for the mode rotation as another new element.

2. Formulation of the problem. As in [1], we consider a cylindrical plasma with nearby

resistive wall of radius r,, thickness d, and uniform resistivity 7. The plasma-wall gap and
space behind the wall are treated as vacuum. The magnetic field is described as B=B, +Db,
where B, is the axisymmetric equilibrium field (6B, /ot=0) and b is the perturbation. The
latter induces the eddy current j=oE in the wall, where E is the electric field governed by
VxE=-0db/at. In the wall, the volume density of the force is

f=jxB=jxB,+]jxb. 1)

Following [1], we take a radial component of the linear term and introduce

out
f= - [(xBy)-e,dr @

W in

with integration across the wall. If the wall is geometrically thin (d, <<, ), we have
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out

[idr=e xb[" sothat f.d,=B,-b 3)

ot
This corresponds to Eq. (36) in [1]. We use it as a starting point.
3. Calculation of the force. Here b=V is the vacuum field at the wall surfaces. Therefore,
mRb, =-nrb, 4)

for a single-mode perturbation depending on the poloidal and toroidal angles 6 and £ as

u = Re[u,(r,t)exp(imd—ing)] (5)
with different (complex) u, at the opposite sides of the wall. Trivially obtained from b=V¢
with ¢ in the form (5), relation (4) does not need any comment except that it differs from
(incorrect) equation (38) for b, in [1]. The consequences will follow.

With (4), Eq. (3) yields

f_BOQ

a= (m-na)-b,[ . (6)

where By, and q=rB,. /(RB,,) are taken at the wall (r =r,,), R is the major radius.
Next we have to calculate the right-hand side of (6) and compare f,, with the result of

[1]. For perturbations prescribed by (5), at nr << mR equation V¢ =0 gives us
== B, X" T (" x")| )
m 2m
in the plasma-wall vacuum gap with x =r/r, and amplitudes B, and I, . Then

b, = —i(0+ T, /M), (1), ©)

in

where b, =dg,_/ar is the complex amplitude of b-Vr. Similarly we have b, | =-ib(r,,)

just behind the wall, where r,, =, +d,, is the outer minor radius of the wall, and

_ r b.(r,.)
K. =-b =ib -m 4] rerwel | 9
b 9C|out I rc(rw)|: m * brc(rw) :| ( )

Using this definition and complex notation introduced by (5) we obtain from (6)

B : n_r
frlc = _d_oa(l_ gO)Kb with 9o = Eqpl rT)zlv (10)

where g, is g at the plasma boundary (q o r’ in the vacuum) and r, the plasma minor

w

radius. Eg. (10) has the same structure as Eq. (40) in [1], but differs from it by the factor of

1-9, m? 1
., where —g———————— 11
1+g, h=% g yr, +mr2/R? (1)
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for perturbations with u, < exp(st) and 7, =r,d, /7. Expression for g, here corresponds to
Eqg. (41) in [1] with definition of 7, next to Eq. (31) there. Eqg. (8) in [2] gives a different g,.
The analytical model in [1] was developed for evaluation of the wall force dependence
on current and wall resistivity. Equations (10) and (11) show that our model will give an
essentially different dependence on yz,, at the same K, asin [1].
In [1], the force is expressed finally through the radial component &, of the plasma

displacement &. To move in this direction we use the consequence of (7) (see also [6])
m: 1+£(1_X2m) Lxmt (12)
brc(rw) 2m

valid in the plasma-wall gap. This allows to transform (9) into

m  x(l+a)
r,2m/I +1-x

S AL (). (13)

where x=(r, /r,)", w, =—irb (r)/m and
We introduced y, to facilitate comparisons with the models representing the perpendicular
component of b (fully described here by V¢ invacuum)as Vi xVz, Eq. (20) in [1].
Equation (13) can be used for any plasma. If it is assumed ideal as in [1], we have
b=Vx(&xB,), b,=B,-V¢, and
My, = By, (M—na)¢, (15)
at the plasma boundary. Note that a large multiplier B, is missing in similar Eq. (42) in [1].

4. Comparisons and discussion. Up to now the ratio b, (r,,)/b,(r,) and the quantity I, are

free parameters in our formulas. In [1, 2], a thin shell approximation has been used that

requires continuity of the normal component of b (here, b,) at the wall. Then &, =0 and T,
is related to the growth rate » by (see [3-6] and the references therein)

T, =y, with z,=rd,/7. (16)

w

Combining this with (13) and the ideal-plasma relation (15), we obtain from (10)

2

1-¢9 B
f, . =2 0 % (m-n r,). 17
ric 1—]('2 +2m/]/TW rWdW( qpl)Kfrc( pl) ( )

This can be compared with Eq. (43) in [1] and Egs. (7)—(9) in [2] for the same force.
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One can easily note the absence of r, in the denominator of Eq. (43) in [1]. Another

more serious disagreement of our expression (17) from the corresponding results in [1, 2] has

deeper roots: it comes from the use of Eq. (4) here instead of Eq. (38) in [1] for b, (r,.)
combined with disregard of b, (r,) in Eq. (36) there. Finally, this difference is quantified by
the factor (11) with 1+ g, varying with y, while 1- g, remains constant.

It follows from (17) that f.,. monotonically increases with y from f,,. =0 at y =0:

ric y H _ YTy 2
= — with = Y(1-x s 18

where ™ is the maximal value of f

ric ric

(the saturation f, /=
0.8

level achieved at yz, — o). On the contrary, Eq. (43) in
0.6

[1] shows non-monotonic dependence of the force on » ol

with a maximum at yz,, =1. This was emphasized [1, 2] .t

as a merit of the model, but actually is a mistake. That ~ / : TR : n
equation and our solution (18) are compared in Fig. 1. In  Fig. 1. The force calculated by (18) (solid)

] and by Eq. (43) in [1] (dashed curve) with
[1] the dependence of sideways force on yr, (dashed the same normalization at n=m=1,

. q =0'57 :3 1R=3 .
curve) was found to agree moderately well with the " =T e
simulations. Fig. 1 shows that it should be considered as purely accidental because of strong
disagreement of the correct result (solid curve) with the result from [1] obtained under

unjustified simplifications. Let us note that Egs. (7)—(9) in [2] give a finite force at » =0.

5. Conclusion. In the model [1], the plasma pressure is zero, j, =const in the plasma, and »
is real. Here the plasma parameters are not restricted in any way and » can be complex (the
latter allows the mode rotation). Also, we do not employ the thin-wall approximation in the
main part of our calculations. With applicability range much wider than in [1] and without

artificial constraints on b, used there, our model is more realistic and precise. We

recommend it for numerical and experimental testing.
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