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Introduction. High power ECRH is widely used nowadays and it is considered for
application in ITER. In the community since 80" nonlinear effects such as parametric decay
instabilities (PDIs) were believed to be deeply suppressed in the first harmonic ordinary
mode and second harmonic extraordinary mode ECRH experiments in toroidal magnetic
fusion devices [1]. Nevertheless, during the last decade a number of anomalous phenomena
observations have been reported in second harmonic ECRH experiments [2-4] such as fast
ion generation [2, 3] and anomalous backscattering [4]. An explanation of these observations
proposed recently is based on possibility of low-threshold parametric excitation of decay
waves trapped in plasma due to non-monotonic behaviour of plasma density in radial
direction [5, 6]. This mechanism is not specific for the second harmonic ECRH and can occur
in the case of the first harmonic O-mode heating in contemporary devices and in ITER. Here
we analyse a possibility of low-threshold parametric excitation by the first harmonic O-mode
pump of the upper hybrid (UH) and ion acoustic (IA) waves in axially symmetric which can
be considered as a model of excitation in filament or blob elongated in the magnetic field
direction but can be observed in the linear plasma device [7], as well.

The basic equations. We consider the decay of the ordinary pump wave propagating

perpendicular to the magnetic field and possessing the electric field given by expression
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P is a pump wave power. The wave number of the pump wave is supposed to be negligible

compared to wave numbers of the decay waves. We use cylindrical coordinate system below

with the axial direction along the magnetic field. The basic equations describing generation
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of UH wave ¢, =@, ,(r)e and IA wave g, = ¢ (r)e™" and their convective
losses from the decay region are as follows:
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a, =——-—andg@,,’ stands for the solution of Eq. (1) with the omitted wave interaction.
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The simplified model. In the WKB approximation Eq. (1) without wave interaction takes the

following form
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In the case of axially symmetric plasma the UH wave is trapped in the radial

kp.om™! directionbetween the UHR and
]52 the internal cut off which

10; /’—_— appears due to refraction

5 \ making the plasma axis

: | B e 03 T nem evanescent. At high azimuthal

N / numbers the finite transparency
_1o§ k region degenerates into a point
” r=r, (see Fig. 2), where ., @

Fig. 2.Exact (blue line) and approximated (green line) dispersion )
curves of the UH wave and dispersion curve of the IS wave (red line) are defined by the equations

D(O, r., a)c) =0 and D, (O, r., a)c) =0 . Since the wave is also trapped in the
azimuthaldirection due to the plasma axialsymmetry there are only axial convective losses

for this wave. In the case of narrow UH wave transparency regionthe differential equation for

the UH wave can be simplified as
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Here subscripts » , k. , @ indicate differentiation of D(k,,r, a)) with respect to

corresponding parameter, which is performed at r =7, 0 =@, .

The corresponding expressions for the eigenmode trapped in the radial direction and

eigenvalues are
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where H, (g“ ) stands for Hermitian polynomial.

As it is known from the PDI theory, the three-wave interaction is effective only in the case
the decay conditions for the interacting wave numbers is fulfilled. In our case it makes
obligatory the intersection of UH and IA dispersion curves in Fig.2. In this case the region of
interaction is asmall neighbourhood of IA wave cut-off point where a solution of the Eq. (3)

can be found in the form

0. =c (r)Ai[RI_ d j +e, (r)Bi[ Rz_ rj (5)
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where R is radial coordinate of the IA wave cut-off point and /, =(dkr2 /dr)_5 is Airy

length. The natural boundary conditions for the parametrically driven IA wave are the
asymptotic suppression of the wave in the evanescent regionand absence of the wave incident
on the plasma from the outside.

The UH wave generation due to the nonlinear interaction and axial convective losses can be

described with the help of the perturbation theory:
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Since the eigen frequencies should not change, the diagonal matrix element of the

perturbation <¢(£) (n,r) ‘ 14

ui

¢$) (n,r)> should be equal to zero, so the addition to the axial wave

vector ok_ is defined by the expression
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threshold of the PDI onset. It should be noted
that the threshold is the lower then the axial
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Fig. 3.UH wave (red line) and IS wave (blue line)

potentials wave vector k. is the higher, because the

generation matrix element I puh(r)¢£2)(n, r)dr ~ k.’ and the term responsible for axial
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convective losses D@Jﬁi? (n,r)’dr ~ k.. The maximal value of k, is determined by the

existence of appropriate A wave.

In the case of Granit device parameters [7] (argon plasma, B=0.057, T =1eV,

n,=4.6 10° cm™, f,=w,/27=2.1GHz) for k, =10 and m =12 we obtain the threshold

value P ~ 100 which can be overcome in experiment.

Trapping of UH wave in blob. The possibility of the UH wave trapping in filaments or

blobs possessing density maximum and aligned with magnetic field in the case of ITER
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