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1. Introduction 

For a number of years the Budker Institute of Nuclear Physics, Novosibirsk, Russia in 
collaboration with the domestic and foreign organizations develop the project of 14 MeV 
neutron source, which can be used for fusion material studies and for other application [1,2]. 
The projected neutron source of plasma type is based on the plasma Gas Dynamic Trap (GDT), 
which is a special magnetic mirror system for plasma confinement [3].  Compared to others, 
that of a GDT-based neutron source has essential advantages. A research activity of the Budker 
Institute aims at completing the database of the GDT in the range of high plasma parameters, 
which are relevant for the neutron source, and at demonstrating its feasibility and suitability by 
prototype experiments. 

The GDT-based neutron source (GDT-NS) could also be a candidate for fusion driving 
sub-critical systems (FDS) dedicated to nuclear waste transmutation [4] and fission fuel 
breeding [5].  

2. Resent results of the GDT experiment 
In the last year at the GDT facility in the Budker Institute, which is a hydrogen prototype of 

the source obtained several important results: the electron temperature was increased over 
0.6 keV and the relative plasma pressure β was up to 0.6 in a quasi-stationary regime [6]. These 
parameters are the record for axisymmetric open mirror traps. 

Fig.1 shows the layout of the GDT devise with quarter-section. Relative pressure values β 
(estimated from the local magnetic field perturbation data measured by MSE diagnostic) vs. 
fast ions total energy contents in different GDT experiments are presented on Fig.2.  

 
Fig. 2 Relative pressure β (MSE data) vs. fast 

ions total energy content. 
 

Fig. 1 The layout of GDT experiment. 
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breeding blanket has been added; the original fuel isotopic composition has been replaced with 
one described in benchmark model [13] (start-up MA and Pu isotopic composition has been 
considered). The system had three-batch shuffling scheme with total irradiation time of 6 years. 

Fusion neutron source optimization has led us to the Budker-Post mirror model with 
100 MW D+T neutral beam injection and 1.4x1019 neutrons/s total neutron source strength. 
Neutron emission profile of the neutron source is presented in the Fig. 5b. Small periphery 
injection of cold gas is required for the establishment of vortex confinement and DCLC 
instability suppression. It does not lead to significant deterioration of plasma parameters and 
decrease in fusion power right up to cold to fast ions ratio of 1%. 

It has been determined during the numerical study, that such a source is completely 
adequate for a designed hybrid, if the fuel burnup does not exceed 100 GWth days/tHM and BOL 
criticality level is not less than 0.95. Tritium breeding ratio remains far beyond 
self-maintenance level during the all irradiation time. 

6. Conclusions 
− The wide set of computer codes was developed for modeling of the GDT neutron source 

and also nuclear power systems on its basis.  
− Resent GDT experiments results show the possibility of realizing competitive neutron 

sources based on axisymmetric mirror cell. 
− Numerical optimization of the GDT based neutron source for the driver in FDS MA burner 

was made. Proposed mirror based NS with Qfus = 0.4 uses 100 MW of 80 keV NBIs and has 
6 m long n-zone with up to 1.4x1019 n/s production.  

− Two FDS MA burner systems with different keff were investigated. In result, each one can 
produce 800 GWth of fission power and incinerates in 2 year (one cycle of 6 years 
campaign) about 509 kg MA with burning rate of 43 kg/TWh and very high burnup level.   
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