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1. Introduction

In most of situations, tokamak equilibria are analyzed as two-dimensional (2D) systems with
the axisymmetry. The nature of this symmetry gives many advantages for its analysis.
However, as realistic tokamaks have discreteness of the toroidal field coils, this discreteness
yields the toroidal field ripples (TF ripples) and, strictly speaking, realistic tokamaks could
not be axisymmetric configurations. In previous work!, we pointed out the significance of
three-dimensional (3D) effects, which are effects of plasma equilibrium currents along rippled

field lines.

On the other hand, in recent tokamak experiments, it is noted that stochastic filed lines reduce
strong heat load driven by the edge localize mode (ELM) on the divertor plate. Stochastic
field lines are produced by the external helical perturbation and it is called the Dynamic
Ergodic Divertor (DED). From the viewpoint of high-3 stellarator equilibrium, 3D effects on
the stochastic field are very important because finite- perturbed field produces further
stochasticity in the peripheral region. However, in present analysis of DED, 2D MHD
equilibrium superimposed vacuum helical perturbed field was still used. In order to consider
effects of DED to ELM, considerations of finite-3 MHD equilibrium and the impact of 3D

effects are critical and urgent issue.

In this study, the fully 3D MHD equilibrium of non-axisymmetric tokamak is solved

numerically and the impact of the plasma rotation to the 3D MHD equilibrium is discussed.

For this study, we use a 3D MHD equilibrium code HINT2), which is widely used to analyze
the 3D equilibrium in stellarator researches. Since the HINT uses the real coordinate system,
it can treat magnetic island and stochastic field in the computational domain. Thus, as first
step, we study the 3D MHD equilibrium including the toroidal rotation. Special attention is

the change of the magnetic island due to the toroidal plasma rotation.
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2. 3D MHD equilibrium calculation including toroidal rotation

At first, we discuss the improvement of the HINT code to include the toroidal rotation.
vacuum field in the ITER. The HINT code is a 3D MHD equilibrium calculation code, which
is based on the relaxation method. Since the HINT code uses the real coordinate system,
which is the cylindrical coordinate, the code can capture the magnetic island and stochastic
magnetic field lines in the calculation. The HINT code had been developed for stellarator and
heliotron researches and the original version of the code adopted a non orthogonal coordinate
system, so-called the rotating helical coordinate system. The HINT code had been updated
successfully to the HINT2 code and that code applied to the tokamak calculation with 3D
perturbation fields, which are the toroidal field ripple, 3D error field and resonant magnetic
perturbation (RMP) fields. However, up to now, the 3D MHD equilibrium is calculated as the
magnet static equilibrium. Recently, effects of the plasma rotation to the RMP field, which are
shielding and amplification of RMPS, are hot topics in ELM suppression and mitigation
experiments. To understand those effects, including the plasma rotation to the 3D MHD
equilibrium calculation is urgent issue. In this section, the implementation how to include the

plasma rotation is shown.

In this study, only the toroidal rotation is studied for simplicity. The toroidal rotation is
prescribed by the function of the toroidal flux and the toroidal flow velocity is defined by the
Mach number,

M=%

s
v th

where Vv, is the toroidal flow velocity and Vv, is the ion thermal velocity.

The HINT code consists of two parts. First part, step-A, is the relaxation process of the
plasma pressure with fixed the magnetic field. Second part, step-B, is the relaxation process of
the magnetic field with fixed the plasma pressure. The step-A calculates the pressure
distribution satisfying the condition B-V p=0 . Instead of calculating that condition, the
step-A calculates an averaged plasma pressure along a magnetic field lines, because the
condition means no variation of the plasma pressure along the magnetic field lines. Details is
shown in Ref. For a case of existing the toroidal flow velocity, the pressure distribution shifts
to the outward of the torus by the inertial force. In such a case, the pressure distribution is

prescribed by
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pls, R)=pexp(M*(75=1))

0
On the other hand, the step-B calculates the time evolution of nonlinear dissipative MHD
equations. In these equations, the magnetic field and plasma flow velocity are given by

V=v,+V, and B =§0+§ . . Here, EO is the vacuum magnetic field and El is the
equilibrium response field. The V, is a given toroidal flow velocity and V, is the MHD

velocity. Thus, dissipative MHD equations are
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The spatial derivation is approximated by 4™ order central finite difference scheme and time
marching is calculated by the 4™ order Runge-Kutta-Gill scheme. Calculating those two steps

iteratively, a steady-state solution is obtained.
3. Model Calculation of a tokamak with circular cross sections

In this study, we study a tokamak with circular cross section, which is a comparable to the

TFTR. In that configuration, the major radius R, is3 mand the plasma minor radius a

is 1 m. Pressure p and current density profiles j_,:e, are relation to  (1—s) in both.
The volume averaged beta <%pbeta> is about 0.7% and the toroidal current I net is 2 MA. In

such a case, the safety factor ¢ is monotonically increased from 1.3 to 3.

To study effects of the plasma rotation to the magnetic island, n=1 perturbed field is
analytically superposed to the plasma. In this configuration, important rationals are m/n = 2/1
and 3/1. Figure 1 (a) shows a puncture map of magnetic field lines for the M=0 case, which is
zero plasma rotation. m = 2 and 3 island chains appear in the plasma. Special notice is a phase

of m=2 islands. O-points of m=2 islands are on the Z = 0 plane.

On the other hand, figure 1 (b) shows a puncture map of magnetic field lines for the A=0.1
case. Widths of m=2 magnetic islands are almost identical to the M=0 case. However, the
phase of m=2 islands slip poloidally compared with the M=0 case. From these results, the
shielding of the RMP is very weak. These results are comparable to other results. Similar

studies were done by ANIMEC? and NIMROD? code. In that result, the shielding of the
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plasma rotation is very weak but the phase slip appeared in the NIMROD simulation. These

are preliminary results but further results will be discussed in near future.

(a) M=0 (b) M=0.1
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Figure 1 Puncture maps of magnetic field lines for (a) M=0 and (b) M=0.1 are shown.

Pressure and current density profiles are same in both case.
4. Summary

The 3D MHD equilibrium including the plasma rotation is studied for the simple tokamak
with circular cross sections. To calculate the 3D MHD equilibrium with the plasma rotation,
the 3D MHD equilibrium calculation code, HINT, is improved. In this study, impacts of the
toroidal rotation to the magnetic island are studied. If n=1 perturbed field superposes, m=2
and 3 islands appeared. For the M=0.1, the width of magnetic islands is identical to the zero
rotation case. However, the phase of m=2 and 3 islands slip poloidally. Detailed discussions

will shown in near future.
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