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  The extended neoclassical rotation theory
1,2 

incorporating poloidal asymmetries in density, 

rotation velocities, and electrostatic potential was recently extended
3,4

 to an elongated 

poloidally asymmetric and Shafranov-shifted flux surface geometry
5,6

. The theory
1-4

 is based 

on the Braginskii’s closure
7
, the Stacey-Sigmar(S-S) representation of the poloidal 

asymmetries
8,9

 and its viscosity model based on the Braginskii’s flow rate of strain
7
 is 

extended to the Miller flux surface model by Stacey and Bae
10

 and to arbitrary collisionality 

by the use of the Shaing-Sigmar neoclassical viscosity model
9
. Along with the reported 

measurements of the poloidal variations in density and velocity in many tokamaks
11-15

, a 

neoclassical investigation of their effect on plasma rotation and transport is reported in a 

recent paper
16

, which is summarized in this report.  

  The momentum balance equation in Eq. (1),  
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with the first term coming from the Reynolds stress, ( )j jj j
n m V V∇ ⋅

�� ��
, thus called “inertial” term 

in the extended theory
1-4

 is decomposed into three components( , ,r θ φ ) and converted into 

the curvilinear geometry by Stacey and Bae
11

. The final curvilinear form of the poloidal 

momentum balance equation is shown in Eq. (2) with the sources( o

jS  and 
1

jS
��

) and 

friction(
1

jF
��

) replaced with the actual calculation models.  
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where hθ  is the poloidal metric coefficient and 
jM is the external momentum. The lowest 

order Fourier expansion of density, velocity, and electrostatic potential is of the form, 

 ( ) ( ) ( ) ( ), 1 cos sinc s
jj j j

X r X r X r X rθ θ θ ≈ + + 
                          (3)
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for a given plasma parameter X of the species j  with the overbar indicating the average over 

the flux surface.  The superscript "c" and “s” indicate poloidally "in-out" and “up-down” 

asymmetries respectively.  

  The cross-field toroidal angular momentum transports are represented by the inertial and 

gyroviscous transport frequencies (
njν  and 

djν  respectively) shown below.   
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where 
jG  and ɶ jθ  can be found in Ref. [16], 0R r∂ ∂  represents the Shafranov shift

5
, 

( )1
1XL X X r

− = − ∂ ∂  is the gradient length scales, 
r

h  is the radial metric coefficient, 0r Rε ≡ , 

�
,

,
c s

c s
j jV Vφ φ ε≡ , and ɶ

, , /
c s c s
j jn n ε ≡ . The extended rotation theory

1-4
 neglects the perpendicular 

viscosity due to Braginskii's 
gvη η⊥>>  ordering and the gyroviscosity, calculated as a strong 

function of poloidal asymmetries, replaces the role of predicting the neoclassical viscous 

damping. The theory
3,4

 takes the cosine and sine moments of Eq. (2), which reduce to Eqs. (8) 

and (9) respectively (expressed in generic forms with j  being either i deuterium= or 

I carbon=  and k  being the other), to solve for ɶ ( )
,c s

jn r  and the other asymmetries are 

coupled with ɶ ( )
,c s

jn r . 

ɶ ɶ ɶ
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c s c

j j kC C C C
A n A n A n B+ + = ,                                                                                            (8) 

ɶ ɶ ɶ
1 2 3
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Two similar KSTAR NBI H-mode discharges were analyzed recently
16

. Fig. 1 shows the 

toroidal (Vt) and poloidal (Vp) velocities predicted by GTROTA
17

, the rotation and transport 

calculation code written for the extended rotation theory
3,4

. The predicted Vt ( comp

CVt ) results 

are shown to stay within approximately <10 % to the experimentally measured profiles 

( initial

CVt ) in the core ranges.  

 

a) #5505(2500ms)                                             b) #5953(2500ms) 

FIG. 1. Vt and Vp in two KSTAR discharges (positive CW for Vt / upward at outboard midplane for Vp) 

  Figs. 2 show all the calculated poloidal asymmetries for the reliable range ( 0.9ρ < ) with 

the current theory
3,4

. Fig. 3 presents the calculated inertial (
njν ) and gyroviscous (

djν ) 

transport frequencies, and their additions (
nj djν ν+ ), showing no indication of gyroviscous 

cancellation in realistic tokamak geometry. 

      a) #5505(2500ms) 

      b)  #5953(2500ms) 

FIG. 2. Poloidal asymmetries of KSTAR #5505(2500ms) and  #5953(2500ms) discharges. 
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FIG. 3. Transport frequencies of two KSTAR discharges (left: #5505-2500 ms/right: #5953-2500 ms) 

  In conclusion, the extended rotation theory
3,4

 allows unprecedented neoclassical 

calculations of the poloidal asymmetries not only in density but also in velocities and 

electrostatic potential, thus neoclassically predicting both the inertial and gyroviscous 

transport contributions as functions of these asymmetries. The numerical calculations for the 

two KSTAR discharges show the following ordering relation between the asymmetries. 

 ( ){ } ( ){ } ( ){ }/ 2 / 2 1

, ,10 ~ ~ 10 ~ 10c s c s s cO n V O V Oφ θ φ θ
− − −Φ ≤ < <                       (10) 

The extended rotation theory
3,4

 will be further developed in the future to increase its accuracy 

in the plasma edge.  
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